MSMP Mechanics, Surfaces and Materials Processing **TCM-IMS**

Pr. L. BARRALLIER

Surface integrity and durability of mechanical parts

Surface integrity

Laser welding

From the surface to the durabilty

- Concepts of integrity and use of mechanical parts
 - Exemples
 - Principle
- Mechanical surface
 - Definition
 - Relationship with the mechanical processings
- Multiscale approaches
 - Exemples
 - Principle

Example 1

Example 2

Steam generator tubes

Principle

Dendritic microstructure

From the surface to the durabilty: a global approaches

Processings

- Metal elaboration
- Forming, casting, forging,...
- Direct manufacturing
- Machining, cutting,grinding,...
- Surface treatments
- Sequence

Loading

- Mechanical
- Chemical
- Thermal
- Radiation (neutron)

Generation

- Volume
- Surface
- Microstructures

Modification

- Microstructure
- Wear

Constraints

- Price
- Environment
- Regulation

Use

- Functionality
- Service life
- Fiability
- ..

Schematic approach

From the surface to the durabilty

- Durability is a function of the initial state
- Depending of (μ)geometry and external constraints
- Multiscale approaches

Why the surface ? 1/4

From the surface to the durabilty

Material close to the surface is generaly the more loaded

Why the surface ? 2/4

Functionality
Energy storage
Number of cycles to
failure
Fiability
Service time

Shot Peening Painting

High elastic limit carbon steel

From the surface to the durabilty

Material close to the surface is generaly the more loaded

Why the surface ? 3/4

From the surface to the durabilty

Material close to the surface is generaly the more loaded

Why the surface ? 4/4

From the surface to the durabilty

Material close to the surface is generaly the more loaded

Mechanical surfaces

Surface for mechanical parts

Material close to the surface is generally the more loaded

Multiscale approach

From microscopical to macroscopical scale

- Macroscopical properties are function of microscopical properties
- Exemple : effet of temperature gradient during cooling

Multiscale approach 1/4

From microscopical to macroscopical scale

- Mechanical grain properties are function
 - of the inner defects
 - Crystal structure
 - Point defects: interstitial substitution atoms, vacancies
 - Dislocations density, twins
 - Grain boundaries
 - Precipitations
 - orientation

Multiscale approach 2/4

Multiscale approach 3/4

From microscopical to macroscopical scale

Mechanical properties gradient

Multiscale approach 4/4

From microscopical to macroscopical scale

Exemple : multiscale geometry

Multiscale approach Principle

From (nano) microscopical to macroscopical scale and parts

- Nanoscale (< 100 nm)</p>
 - Surface : adsorption
 - ► Volume : defects, atom mouvement
- Microscale (100 nm 100 μm)
 - Surface : roughness
 - ► Volume : diffusion, grains
- Macroscale (100 µm 1 mm)
 - Surface : form
 - Volume: thermodynamic, polycrystal, engineering
- Part (1 mm ...)
 - Surface : functionnalisation
 - Volume :