A. 2 Incompatible meshes

A.2.1 Text

We want to make a displacement connection between two meshes along an interface. The interface as a length $2 e$ and is oriented by direction x. The position of the nodes on the interface is parametrized by position x and the origin is in the center of the interface. The mesh situated at le left of the interface is denoted I and the one at the right $I I$.

Figure 14: Incompatibles meshes
For simplification, we are only interested in the connection of one term of displacement denoted $u . u^{I}(x)$ (resp $\left.u^{I I}(x)\right)$ is the expression of this term on mesh I (resp $I I$). On the interface, there is just only one linear element on mesh I wich degree of freedom are denoted u_{1} are u_{2}. Mesh $I I$ is made of two linear elements which degrees of freedom are u_{3}, u_{4} et u_{5} (see figure 14). The analytical expression of the displacements $u^{I}(x)$ et de $u^{I I}(x)$ are then:
$u^{I}(x)=\frac{u_{1}-u_{2}}{2 e} x+\frac{u_{1}+u_{2}}{2}, \quad \forall x \in[-e, e] \quad ; \quad u^{I I}(x)= \begin{cases}\frac{u_{3}-u_{4}}{e} x+u_{4} & , \quad \text { if } x \in[0, e] \\ \frac{u_{4}-u_{5}}{e} x+u_{4} & , \quad \text { if } x \in[-e, 0]\end{cases}$

1. Explain the notions of master mesh and slave mesh.
2. Explain the notion of connection at a mean sens.
3. Gives the conditions that have to be prescribe on degree of freedom $u_{1}, u_{2}, u_{3}, u_{4}$ et u_{5} depending on the type of connection
(a) ponctual connection for which, mesh I is the master mesh.
(b) ponctual connection for which, mesh $I I$ is the master mesh.
(c) connection at a mean sens allowing the transmition of constant forces.
(d) connection at a mean sens allowing the transmition of linear forces.

A.2.2 Correction

1. See lecture notes
2. See lecture notes
3. Conditions on the degrees of freedom
(a) ponctual connection for which, mesh I is the master mesh.

$$
\begin{cases}u_{1}-u_{3} & =0 \\ u_{2}-u_{5} & =0 \\ \frac{u_{1}+u_{2}}{2}-u_{4} & =0\end{cases}
$$

(b) ponctual connection for which, mesh $I I$ is the master mesh.

$$
\left\{\begin{array}{l}
u_{1}-u_{3}=0 \\
u_{2}-u_{5}=0
\end{array}\right.
$$

(c) connection at a mean sens allowing the transmition of constant forces.

$$
\int_{-e}^{e} 1 .\left(u^{I I}-u^{I}\right) d x=0
$$

thus

$$
\int_{-e}^{0} \frac{u_{4}-u_{5}}{e} x d x+\int_{0}^{e} \frac{u_{3}-u_{4}}{e} x d x+\int_{-e}^{e}\left\{u_{4}-\frac{u_{1}-u_{2}}{2} x-\frac{u_{1}-u_{2}}{2 e}\right\} d x=0
$$

The condition on the degrees of freedom is then:

$$
\frac{u_{3}+u_{5}}{2}+u_{4}-u_{1}-u_{2}=0
$$

(d) connection at a mean sens allowing the transmission of linear forces: to the conditions obtained at the previous question we had:

$$
\int_{-e}^{e} x \cdot\left(u^{I I}-u^{I}\right) d x=0
$$

thus

$$
\int_{-e}^{0} \frac{u_{4}-u_{5}}{e} x^{2} d x+\int_{0}^{e} \frac{u_{3}-u_{4}}{e} x^{2} d x+\int_{-e}^{e}\left\{u_{4} x-\frac{u_{1}-u_{2}}{2} x^{2}-\frac{u_{1}-u_{2}}{2 e} x\right\} d x=0
$$

thus

$$
u_{3}-u_{5}-u_{1}+u_{2}=0
$$

The two conditions are then:

$$
\begin{cases}\frac{u_{3}+u_{5}}{2}+u_{4}-u_{1}-u_{2} & =0 \\ u_{3}-u_{5}-u_{1}+u_{2} & =0\end{cases}
$$

