Heat transfer

Supervised Practical Work Thermal radiation

N. RANC

Exercise 1: Estimation of the solar constant

The sun is supposed to behave very nearly like a blackbody at approximately 5777K. In this exercise the solar radiation attenuation by the atmosphere will be neglected. The sun radius and the average distance between Earth and sun are respectively $R_s = 6.96 \times 10^8 \, m$ and $d_{ES} = 1.496 \times 10^{11} \, m$.

- 1. At what wavelength has the sun its maximum spectral emissive power.
- 2. Calculate the total emissive power of the sun.
- 3. Determine the solid angle with which the sun is seen from Earth.
- 4. Determine the total solar heat flux incident in the earth per unit surface of area directed at the sun (i.e., normal to the sun rays).

EXERCISE 2: Radiation in a hemisphere

Let us consider a cavity shown in figure 1, which consists of a hemispher and two plane surfaces A_3 and A_1 . All these surface are considered as black. Let us supposed that the temperature of A_1 is T_1 and that the temperature of A_2 and A_3 are equal to T_2 . The diameter of the hemisphere is noted D. The diameter of the disk A_1 is D/2.

Figure 1: Hemispherical cavity

- 1. Express the various view factors of the problem.
- 2. Calculate the heat exchange from A_2 to A_1 .
- 3. Calculate the heat exchange from A_3 to A_1 ;
- 4. Calculate the heat exchange from A_1 to A_2 .
- 5. Express the total energy rate exchange between A_1 to A_2 .
- 6. Make the numerical application for $D=1\,\mathrm{m},\,T_1=20\,^{\circ}\mathrm{C}$ and $T_2=1000\,^{\circ}\mathrm{C}$.

Exercise 3: Estimation of the view factors between parallel coaxial disks

Let us consider two parallel and coaxial disks represented in figure 2. The radius of the upper disk is R_1 and the surface of the second disk dS_2 is supposed to be very small. The temperature the upper disk and the small disk are respectively T_1 and T_2 . The distance between the center of the two disks is h.

Figure 2: view factor between two parallel and coaxial disks

- 1. Calculate the view factor between the disk 2 and the upper disk 1.
- 2. Express the heat flux radiated by the upper disk to the small disk.

* *

*