Heat transfer

Supervised Practical Work

Thermal radiation

N. RANC

Exercise 1: Estimation of the solar constant

The sun is supposed to behave very nearly like a blackbody at approximately 5777 K . In this exercise the solar radiation attenuation by the atmosphere will be neglected. The sun radius and the average distance between Earth and sun are respectively $R_{s}=6.96 \times 10^{8} \mathrm{~m}$ and $d_{E S}=1.496 \times 10^{11} \mathrm{~m}$.

1. At what wavelength has the sun its maximum spectral emissive power.
2. Calculate the total emissive power of the sun.
3. Determine the solid angle with which the sun is seen from Earth.
4. Determine the total solar heat flux incident in the earth per unit surface of area directed at the sun (i.e., normal to the sun rays).

Exercise 2: Radiation in a hemisphere
Let us consider a cavity shown in figure 1, which consists of a hemispher and two plane surfaces A_{3} and A_{1}. All these surface are considered as black. Let us supposed that the temperature of A_{1} is T_{1} and that the temperature of A_{2} and A_{3} are equal to T_{2}. The diameter of the hemisphere is noted D. The diameter of the disk A_{1} is $D / 2$.

Figure 1: Hemispherical cavity

1. Express the various view factors of the problem.
2. Calculate the heat exchange from A_{2} to A_{1}.
3. Calculate the heat exchange from A_{3} to A_{1};
4. Calculate the heat exchange from A_{1} to A_{2}.
5. Express the total energy rate exchange between A_{1} to A_{2}.
6. Make the numerical application for $D=1 \mathrm{~m}, T_{1}=20^{\circ} \mathrm{C}$ and $T_{2}=1000^{\circ} \mathrm{C}$.

Exercise 3: Estimation of the view factors between parallel coaxial disks
Let us consider two parallel and coaxial disks represented in figure 2. The radius of the upper disk is R_{1} and the surface of the second disk $d S_{2}$ is supposed to be very small. The temperature the upper disk and the small disk are respectively T_{1} and T_{2}. The distance between the center of the two disks is h.

Figure 2: view factor between two parallel and coaxial disks

1. Calculate the view factor between the disk 2 and the upper disk 1 .
2. Express the heat flux radiated by the upper disk to the small disk.

