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Introduction

What is Heat Transfer?
Heat transfer is a science that seeks to predict the energy transfer that
may take place between and inside materials as a result of temperature
difference.

Remarks
Thermodynamics deals with energy equilibrium and does not predict
how fast the heat transfer will occur.

In thermodynamics, you have learned two type of energy exchange
by interaction of the system with surroundings : work and heat

It is necessary to introduce physical rules in order to describe the
heat transfer rate (in supplement of the two principles of
thermodynamics.)



Understand heat transfer

Heat transfer properties

Heat energy always moves from a warmer body to colder body

Heat transfer will continue until both bodies have the same
temperature

There is three modes of heat transfer
Conduction

Convection

Radiation



Conduction

Exemple

The candle heat the edge of
the bar.

There is heat transfer in the
bar and thus in your hand

Properties of thermal conduction

1. Conduction is a mode of energy transfer within and between bodies.

2. Conduction can occur in all state of matter: gases, liquids, solids or
plasma.

3. The ability to transfer heat energy is quantify by the Thermal
Conductivity

4. Conduction is preponderant in solids.



Conduction : physical mechanisms 1

GAS or LIQUIDS: conduction is due to collisional and diffusive
transfer of kinetics energy of molecule during their random motions.
In liquids the conduction phenomenon is stronger because the
distances between atoms are smaller (more collisions)

a) particle from the hot
side migrate to the cold

side

b) hot particle collides
the cold particle

c) two particles with
similar energy



Conduction : physical mechanisms 2
SOLIDS : for solids there is two mechanisms to explain heat transfer.

I Free electrons effect (in
metals): movement of free
electrons in the lattice.

I Lattice vibration : atoms in
lattice vibrate, interact with
their neighbors and transfer
kinetics energy.



Convection

Definition of convection

Convection is the transfer of heat by bulk motion (advection).

There are two main modes of convection:
Natural convection : natural convection occurs due to temperature
differences which affect the density of the fluid. Heavier (more
dense) components will fall, while lighter (less dense) components
rise, leading to bulk fluid movement.

Forced convection : in the case of forced convection, fluid movement
results from external surface forces



Natural convection

Case of gases : radiator in a
room

Heated air rises, cools and fall

Case of liquids : water in a pan

Hot water rises, cools and falls



Forced convection

Exemple: heat-sink and fan to cool a processor

Heat-sink to increase the
surface area which dissipates
heat

Fans to speed up the heat
exchange.



Radiation

The radiation
Heat transfer by radiation is the transfer of through electromagnetic
waves

Example: solar thermal power plant

Concentrated solar power
systems use mirrors to
concentrate a large area of
sunlight and thus solar thermal
energy, onto a small area

Electrical power is produced
when the concentrated light is
converted to heat, which drives
a heat engine (usually a steam
turbine) connected to an
electrical power generator.



Contents of the lecture

Objectives

To establish the physical rules in order to describe the heat transfer
rate for conduction, convection and radiation.

To highlight their consequences on the energy conservation (first law
of thermodynamics)
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Subsection 1

Basis of thermodynamics



Basis of thermodynamics: internal energy

The internal energy noted U is the total energy contained by a
thermodynamic system

Energy needed to create the system, but excludes
I the energy to displace the system’s surroundings
I any energy associated with a move as a whole or due to external

force fields

Internal energy has two major components,
I kinetic energy at microscopic scale: motion of particles (translations,

rotations, vibrations),
I potential energy at microscopic scale: interaction between particles.



Basis of thermodynamics: enthalpy

The enthalpy is define as

H = U + pV

A small variation of enthalpy can also be express as:

dH = dU + pdV + V dp.

Enthalpy includes
I the internal energy, which is the energy required to create a system,
I the amount of energy required to make room for it by displacing its

environment and establishing its volume and pressure.



Basis of thermodynamics: conservation of the energy

For a system undergoing only thermodynamics processes, i.e. a
closed system that can exchange only heat Q and work W, the
change in the internal energy dU is given by the first law of
thermodynamics.

dU = δW + δQ



Basis of thermodynamics: particular transformations

Two special cases can be considered:

For a transformation at constant volume the work of the pressure
force work δW = −pextdV is equal to zero. We obtain

dU = δW + δQ (1)

= δQ (2)

For a transformation at constant pressure the equilibrium of pressure
gives pext = p and the first law of thermodynamics allows to express
the enthalpy variation:

dH = dU + pdV + V dp︸︷︷︸
=0

(3)

= δQ (4)



Basis of thermodynamics: heat capacity and calorimetric
coefficient

Heat capacity per unit of mass at constant volume and at constant
pressure are define respectively by

1

m

(
∂U

∂T

)
V

= cV and
1

m

(
∂H

∂T

)
p

= cp (5)

The internal energy and the enthalpy can thus express as:

dU = mcvdT + (`− p)dV and dH = mcpdT + (h̄ + V )dp, (6)

with ` and h̄ two other calorimetric coefficients.



Basis of thermodynamics: heat capacity

The heat capacity of various material is given in the table

For a solids and liquids, which are slightly compressible, the heat
capacity at constant volume or constant pressure are equal
:cp = cv = C

Table: Heat capacity for various materials at ambient temperature and
atmospheric pressure

cV in Jm−1kg−1 cp in Jm−1kg−1

air 701 1005
water 4187 4187
steel 460 460



Subsection 2

Heat flux definition



Heat flux definition

The rate at which heat is transferred across any surface at a point P
per unit area per unit time is called the flux of heat at that point
across that surface and is denote φ.

This notion can be extended to a tri-dimensional problem. The heat
flux vector ~q is then define as

~q =

 φx
φy
φz

 (7)

where φx , φy and φz , are the rate of heat flow across a unit surface
with a normal toward respectively x axis, y axis and z axis.



Heat flux properties

The the heat flux across an infinitesimal surface dS with a normal ~n
is φ = ~q.~ndS

The direction of the heat flux vector is the direction of the heat
transfer

The unit of heat flux is W/m2



Subsection 3

Fourier’law



Fourier’s law: 1D case

Fourier’s law of heat conduction is the basic law which says that the
rate of heat flow across a unit area φ is proportional to the
temperature gradient perpendicular to the area (x direction).

φ = −k dT

dx
(8)

k is called the thermal conductivity. This constant represent the
ability to transfer heat through a material. Its unit is W m−1 K−1



Thermal conductivity
The value thermal conductivity can vary from about 0.01Wm−1K−1

for gases to 1000Wm−1K−1 for pure metals. Following table gives
some values of the thermal conductivity for various materials.

Table: Thermal conduction value for classical material at ambient temperature.

Material Thermal conductivity
[Wm−1K−1]

air 0.025
wood (white pin) 0.12

rubber 0.16
cement(Portland) 0.29

concrete 0.5
glass 1.1
water 0.58
soil 1.5
ice 2

steel 52
stainless steel 16

aluminium alloy 120-180
pure aluminium 237

copper 401
silver 429



Fourier’s in an isotropic material: 3D generalization
A generalization of the Fourier’s law to a tri-dimensionnal isotropic
material 1 gives:

~q = −k
−−→
grad T (9)

In the case of Cartesian coordinates:

~q =

 φx
φy
φz

 = −k


∂T
∂x

∂T
∂y

∂T
∂z

 (10)

With this definition the heat flux vector is normal to the isothermal
surface.

1In an isotopic material the thermal properties are the same in all the space
directions



Subsection 4

The differential equation of conduction of heat in an
isotropic solid: case of motionless solids



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

If we suppose a small volume dV = Sdx during a time dt, the first law of
thermodynamics gives

dH = δQ and then
dH

dt
=
δQ
dt

(11)

dH

dt
= SdxρC

dT

dt
= −φx(x + dx)S + φx(x)S︸ ︷︷ ︸

Heat loss

+ r(x , t)Sdx︸ ︷︷ ︸
Heat source

(12)

where r(x , t) the heat source per unit of volume and per unit of time. Its
unit is Wm−3.



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

ρC
∂T

∂t
=
−φx(x + dx) + φx(x)

dx
+ r(x , t) = −∂φx

∂x
+ r(x , t) (13)

Taking into account of the Fourier’s law φx = −k ∂T∂x , we obtain:

ρC
∂T

∂t
=
∂2T

∂x2
+ r(x , t) (14)
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Boundary conditions



Boundary conditions

T (`) = T0 : imposed temperature (Dirichlet condition)

ϕ(`) = ϕ0 = −k ∂T
∂x

∣∣
`

: imposed flux (Neumann condition)



Boundary conditions

ϕ(`) = 0 : adiabatic condition

ϕ(`) = h(T (`)− Ta) convection condition with a fluid
I h: convection coefficient(W m−2 K−1)
I Ta: fluid temperature



Boundary conditions

Radiation: ϕ(`) = σF (T (`)4 − T 4
p )

I σ Stefan Boltzmann constant
I F view factor
I temperature of the other surface

Particular case of small temperature difference: T (`) ≈ Tp ≈ Tm:

ϕ = hr (T (`)− Tp) with hr = 4σFT 3
m

Particular case of high temperature Tp: ϕ = −σFT 4
p (Neumann

condition)



Subsection 6

Particular thermal regimes



Particular thermal regimes

Steady state regime: temperature field does not change any further:

∂T

∂t
= 0,

∂ ~ϕ

∂t
= ~0

T (M, t) = T (M)

The periodical regime: the temperature oscillate independently of
the initial conditions

T (M, t) = T0(M) cos(Ωt + Φ)

and with a complex notation

T (M, t) = T0(M)ejωtejΦ with T (M, t) = <(T (M, t))



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

In the general 3D case, a small volume V is considered:

If we postulate the local equilibrium of this volume, the application of the
first law of thermodynamics between time t and time t + dt for a
transformation at pressure volume gives:

dH = δQ (15)



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

1

dt

∫∫∫
V

dhdV = −
∫∫

∂V

~q.~nda +

∫∫∫
V

r(x , t)dV (16)

=

∫∫∫
V

div ~qdV +

∫∫∫
V

r(x , t)dV (17)

with dh = ρCdT = ρCṪdt the variation of the specific enthalpy
(enthalpy per unit of volume).



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

The heat equation is then

ρCṪ = −div ~q + r(x , t) (18)

And with the Fourier’s law the heat equation becomes

ρCṪ = div
(
k
−−→
grad T

)
+ r(x , t) (19)

If the heat conductivity is suppose to be independent of the space
position

ρCṪ = k∆T + r(x , t) (20)

with ∆ the Laplacian operator.



Coordinate expressions of the Laplacian operator

Cartesian coordinates

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(21)

Cylindrical coordinates

∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂ϑ2
+
∂2f

∂z2
(22)

with (x = r cosϑ, y = r sinϑ, z).

Spherical coordinates

∆f =
∂2f

∂r2
+

2

r

∂f

∂r
+

1

r2

∂2f

∂ϕ2
+

1

r2 tanϕ

∂f

∂ϕ
+

1

r2 sin2 ϕ

∂2f

∂ϑ2
(23)

with (x = r sinϕ cosϑ, y = r sinϕ sinϑ, z = r cosϕ).
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The differential equation of conduction of heat in an
isotropic solid: case of moving solids

Case of 1D problem:
I We consider a solid medium moving with a velocity vx along the x

axis.
I At time t we consider a volume of material contain in the domain

ABCD. Between time t and t + dt the materials move from the
domain ABCD to the domain A’B’C’D’.

I dH, δHe and δHs represent the enthalpy respectively in the A’B’CD,
ABA’B’ and CDC’D’ domains.



The differential equation of conduction of heat in an
isotropic solid: case of moving solids

At time t the enthalpy contain in domain ABCD is

dH(t) + δHe (24)

At time t + dt the material move in A’B’CD and the enthalpy in this
domain is

dH(t + dt) + δHs (25)

The first law of thermodynamics applied to the materials in the
ABCD domain at time t and between t and t + dt is

dH(t + dt) + δHs − dH(t)− δHe = δQ (26)



The differential equation of conduction of heat in an
isotropic solid: case of moving solids

The different term of this last equation can be expressed as follow:

dH(t + dt) = SdxρCT (t + dt)
dH(t) = SdxρCT (t)
δHs = Svxdt T (x + dx)
δHe = Svxdt T (x)

We then obtain

SdxρCT (t + dt)− SdxρCT (t) + Svxdt T (x + dx)− Svxdt T (x)

= −Sφx(x + dx) + Sφx(x) (27)

and

ρC
∂T

∂t
dtdx + ρCvx

∂T

∂x
dxdt = −∂φx

∂x
dxdt (28)



The differential equation of conduction of heat in an
isotropic solid: case of moving solids

ρC

(
∂T

∂t
+ vx

∂T

∂x

)
= −∂φx

∂x
(29)

and with the Fourier’s law and a constant heat conductivity

ρC
DT

Dt
= ρC

(
∂T

∂t
+ vx

∂T

∂x

)
= k

∂2T

∂x2
(30)

where DT
Dt denotes the ’differentiation following the motion of the

temperature with respect to the time.



The differential equation of conduction of heat in an
isotropic solid: case of moving solids

The previous heat equation can be generalized to a three-dimensional
problem:

ρC
DT

Dt
= ρC

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
= ρC

(
∂T

∂t
+ (~v .

−−→
grad) T

)
= k∆T (31)
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Subsection 1

Introduction on convection



Introduction to convection

Convection: heat transfer in a fluid or between a fluid and a solid
due to bulk motion (advection)

Two main types of thermal convection:
I Natural convection (or free convection): the fluid motion is due to

body force which acts on a fluid where there is density gradient. The
net effect is a buoyancy force which induces fluid movement. In the
most common case, the density gradient is do to temperature
gradient.

I Forced convection: the relative motion in the fluid or between the
fluid and the surface is maintained by external means such as a fan
or a pump.

Since free convection flow velocities are generally much smaller than
those associated with forced convection, the corresponding convection

transfer rates are also smaller.



Subsection 2

Convection heat transfer coefficient



Convection heat transfer coefficient

Estimation of the heat flux due to convection on a fluid surface
interface:



Typical value of the convection heat transfer coefficient

Process h in W m−2 K−1

Free convection in gases 2 - 25
Free convection in fluids 50 - 1000

Forced convection in gases 25 - 250
Forced convection in fluids 50 - 20000

Convection with phase change
(Boiling or condensation) 25000 - 100000

How to estimate the convection heat transfer coefficient in a given
configuration ?

h = f (C , kf , ρ, µ, α, L,V ,T ...)



Subsection 3

Forced convection



Forced convection : associated equations

Hypothesis :

steady state regime

incompressible fluid: ρ = Cst

The momentum equation is (Navier Stockes
equation):

ρ
d~v

df
= ρ~g −

−−→
grad p + µ~∆~v

Projection along y axis:

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
+ ρ

∂v

∂t︸︷︷︸
=0

= ρg − ∂p

∂y
+ µ

∂2v

∂x2
+
∂2v

∂y2︸︷︷︸
≈0





Forced convection : associated equations

Boundary conditions :

u(0, y) = 0; v(0, y) = 0; v(∞, y) = v∞

Mass equation in steady state regime:

∂u

∂x
+
∂v

∂y
= 0

Heat equation:

u
∂T

∂x
+ v

∂T

∂y
+
∂T

∂t︸︷︷︸
=0

=
kf
ρC

∂2T

∂x2
+
∂2T

∂y2︸︷︷︸
≈0


with a = kf

ρC the heat diffusivity in m2s−1

Boundary conditions :

T (0, y) = Ts ;T (∞, y) = T∞



Forced convection : dimensionless variables and equations

Definition of dimensionless variables:

x∗ = x
L , y∗ = y

L , where L is a characteristic length for the problem
(i.e. length of the plate),

u∗ = u
V , v∗ = v

V , where V is the velocity upstream of the surface,

T ∗ = T−T∞
Ts−T∞ , the dimensionless temperture,

p∗ = p
ρV 2 , the dimensionless pressure

Dimensionless momentum equation:

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
=
∂p∗

∂y∗
+ µ

L

ρV

V

L2︸ ︷︷ ︸
= µ

ρLV = 1
Re

∂2v∗

∂x∗2

with Re the reynolds number : Re = Inertia forces
Viscous forces ≈

ρV 2

L
µV 2

L2



Forced convection: dimensionless variables and equations

Dimensionless heat equation equation:

u∗
∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗
=

a

VL

∂2T ∗

∂x∗2

with
a

VL
=

kf
ρC

1

VL
=

1

Re

ρ

µ

kf
ρC

=
1

Re

kf
µC︸︷︷︸

1
Pr

Pr the Prandt number : Pr = Momentum diffusion
Heat diffusion ≈

µ
ρ

a

with µ
ρ the kinematic viscosity in m2s−1



Forced convection: dimensionless variables and equations
Boundary condition of the heat transfer problem:

ϕ = h(TS − T∞)

and

ϕ = −kf
∂T

∂x

∣∣∣∣
x=0

= −kf
∂T ∗

∂x∗

∣∣∣∣
x∗=0

T∞ − Ts

L

thus

h =
kf
L

∂T ∗

∂x∗

∣∣∣∣
x∗=0

and the Nusselt number is defined as

Nu =
∂T ∗

∂x∗

∣∣∣∣
x∗=0

=
hL

kf

The Nusselt number represents the ratio of the heat flux due to
convection to the heat flux:

Nu =
ϕconvection

ϕconduction
=

h∆T

kf
∆T
L

=
hL

kf



Correlation in forced convection

The equilibrium equations prompt us to expect heat transfer correlation
of the form:

g(Nu,Re,Pr) = 0

or

Nu = f (Re,Pr)



Example of correlation in forced convection

Laminar flow on a plate: Re < 3× 105 and Pr > 0.5

Nu = 0.664Re1/2Pr1/3

Turbulent flow on a plate: Re > 5× 105 and Pr > 0.5

Nu = 0.035Re4/5Pr1/3



Example of correlation in forced convection

Laminar flow in a pipe: Re < 2300

Nu = 3.66

Turbulent flow in a pipe: Re > 104

Nu = 0.023Re4/5Pr0.4
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Natural convection



Natural convection

hypothesis :

steady state regime

gravity force is taken into account

The momentum equation is

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
− g +

µ

ρ

∂2v

∂x2

Far from the surface, a quasistatic pressure is supposed:

∂p

∂y
= −ρ∞g

and thus

u
∂v

∂x
+ v

∂v

∂y
=

g

ρ
(ρ∞ − ρ) +

µ

ρ

∂2v

∂x2



Natural convection
The volumetric thermal expansion coefficient

β =
1

V

(
∂V

∂T

)
p

= −1

ρ

(
∂ρ

∂T

)
p

and thus

β ≈ −1

ρ

ρ∞ − ρ
T∞ − T

Density difference is thus

ρ∞ − ρ ≈ ρβ(T − T∞)

The momentum equation becomes:

u
∂v

∂x
+ v

∂v

∂y
= gβ(T − T∞)︸ ︷︷ ︸

Buoyancy force

+
µ

ρ

∂2v

∂x2

The heat equation remains unchanged:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρC

∂2T

∂x2



Normalized equations of natural convection

Normalization of variables: x∗ = x
L , y∗ = y

L , u∗ = u
V , v∗ = v

V and

T ∗ = T−T∞
Ts−T∞

where L is a characteristic length and V an arbitrary reference velocity.
The momentum equation is reduced to:

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
=

gβ(Ts − T∞)L

V 2
T ∗ +

1

Re

∂2v∗

∂x∗2

and
gβ(Ts − T∞)L

V 2
=

gβ(Ts − T∞)L3

ν2︸ ︷︷ ︸
Gr

( ν

VL

)2

︸ ︷︷ ︸
1/Re2

where Gr is the Grashof number which indicates the ratio of buoyancy
force to the viscous force acting in the fluid.



Correlation in natural convection

The equilibrium equations prompt us to expect heat transfer correlation
of the form:

Nu = f (Re,Gr ,Pr)

This type of correlations are pertinent when forced and free occur.
Generally Gr

Re2 >> 1 and force convection effects may be neglected and:

Nu = f (Gr ,Pr)

In this case the natural convection flow is induced solely by buoyancy
forces.



Example of correlation in natural convection

Vertical plate in laminar flow if 104 < Ra = GrPr < 109 and
Ts = Cst:

Nu = 0.59Ra1/4

Verticale plate in turbulent flow (109 < Ra < 1012)

Nu = 0.13Ra1/3

Vertical cylinder (length L):
I if D

L
≥ 35Gr−1/4 plate correlation

I if D
L
≥ 35Gr−1/4:

Nu exp

(
−2

Nu

)
= 0.6

(
D

L

)1/4

Ra1/4
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Subsection 1

The nature of thermal radiation



The nature of thermal radiation

Thermal radiation can be viewed as consisting of:

Electromagnetic waves: as predicted by electromagnetic wave theory
(Maxwell’s equation)

Massless energy parcels called photons: as predicted by quantum
mechnics

Remarks: neither point of view is able to describe completely all radiative
phenomena that have been observed (both concepts will be used)



Properties of electromagnetic waves and photons

Electromagnetic waves or photons propagate through any medium at
a velocity c = c0

n where :

I c0 the speed of light in vacuum (c0 = 2.998× 10−8 m/s)
I n the refractive index of the medium (for the air at room

temperature and atmospheric presssure, n = 1.00029

a wave or a photon can be chatacterized by:
I its frequency: ν (unit:Hz)
I its wavelength: λ (unit: m
I its angular frequency: ω (unit: rad/s)
I the photon energy: E = hν where h = 6.626× 10−34 J s is the

planck’s constant

These quantities are related to one another through the formula:

ν =
ω

2π
=

c

λ



Spectral range of thermal radiation

Visible range: λ = 0.5 µm
I ν = 6.0× 1014 Hz
I ω = 9.5× 1013 rad/s
I E = 3.0× 10−19 J = 2.5 eV

Near infrared range: λ = 5 µm
I ν = 6.0× 1013 Hz
I ω = 9.5× 1012 rad/s
I E = 3.0× 10−20 J = 0.25 eV

Thermal radiation is defined to be those electromagnetic waves which are
emitted by a medium due solely to its temperature. The associated

spectral tange i between 0.1 µm and more than 100 µm.



Subsection 2

Radiation quantities



The total emissive power

The total emissive power noted E is the energy emitted by an
object per unit of time and per unit object surface

E =
E

S∆T

with

E : emissive power in W m−2

E : emitted energy in J

S : object surface in m2

∆t: time in s

thus
dE = EdtdS

E depends on the local temperature of the surface and on the physical
surface properties.



Spectral emissive power

The spectral emissive power noted Eλ is the energy emitted by an
object per unit of time, per unit object surface and per unit spectral
range

Eλ =
dE

dλ

properties:

dE = Eλdλ

E =

∫ ∞
0

Eλdλ

dE = EλdtdSdλ



The solid angle

The solid angle noted Ω is a measure of the amount of the field of
view from one particular point M that a given object or surface
covers.

dA′ is the associated surface of dA
on the unit hemisphere and called
the solid angle dΩ:

dA′ = dΩ

The solid angle has no unit. It is
expressed in steradian (sr).

The solid angle of a sphere and an
hemisphere are respectively 4π sr
and 2π sr.



The solid angle

Expression of the solid angle of a small surface dA in P with a
normal ~n from the point M.

dAp is the projection of dA on the

plane with the normal ~δ.

dAp = ~δ.~n dA = cos θ dA

The solid angle is then:

dΩ = dA′ =
dAp

r2

where r = MP.

And thus:

dΩ =
cos θdA

r2
=
~δ.~ndA

r2



Solid angle

Properties of the solid angle

Small solid angle in spherical
coordinates:

dΩ = sin θdψdθ

For all the hemisphere surface

Ω =

∫ 2π

0

∫ π
2

0

sin θdθdψ = 2π



Radiative intensity

Estimation of the energy radiated by a surface dA in a direction ~δ

Definition of the area normal to rays dA′

θ = 0°

dA′ = dA

0° < θ < 90°

dA′ = cos θ dA

dA′ = ~δ.~ndA

θ = 90°

dA′ = 0



Radiative intensity

The radiative intensity noted I is en energy emitted by a surface
with an unit surface normal to the rays, per unit of time and solid
angle

I (~δ) =
dE

dA′dΩdt
or

I (~δ) =
dE

~δ.~ndAdΩdt

The radiative spectral intensity noted Iλ is the energy emitted by
a surface per unit surface normal to the rays, per unit of time, per
unit of solid angle and per unit of spectral range

Iλ(~δ, λ) =
dE

~δ.~ndAdΩdt
dλ



Relationship between radiative intensity and emissive power

If the radiative intensity does not depend on ~δ:

E =

∫
hemisphere

I~δ.~ndΩ =

∫ 2π

0

∫ π
2

0

I cos θ sin θdθdψ

after calculations
E = πI

and we have the same type of equation with the spectral quantities

Eλ = πIλ



Subsection 3

Basic law of thermal radiation



Surface properties

Lets us consider an incident wave witch will interact with a medium

(i): incident wave (energy rate: qi )

(r): reflected wave (energy rate: qr )

(a): absorbed wave (energy rate: qa)

(t): transmitted wave (energy rate: qt)

It allows to define the following coefficient:

ρ = qr
qi

the reflectance,

α = qa
qi

the absoptance,

τ = qt
qi

the transmittantce.



Surface properties

Energy balance for the incident wave:

case of tranparent medium:

case of semi-transparent:

opaque medium



Perfect absorber definition

Definition: a perfect absorber (also called a black surface) is an
opaque medium that does not reflect any radiation:

qr = 0 and qt = 0

Properties:
I qi = qa and thus α = 1 (all the incident energy is absobed by the

surface)
I a black surface emits a maximum amount of radiated energy i.e.

more than any other surface at the same temperature



Radiative intensity of the black surface

The spectral intensity of the black surface is given by the Planck’s law:

I 0
λ(λ,T ) =

2hc2λ−5

exp
(

hc
kλT

)
− 1

where

k=1.380 662× 10−23 J K−1 the Boltzmann’s constant,

h=6.626 176× 10−34 Js the Planck’s constant

c=2.998× 108 ms−1 the light speed in vacuum

And thus

E 0
λ(λ,T ) =

2πhc2λ−5

exp
(

hc
kλT

)
− 1

It is customary to introduce:

C1 = 2πhc2 = 3.7418× 10−16 Wm2

C2 = hc
k = 143 883.7418× 10−16 µmK



Properties of the Planck’s law

I 0
λ is independent of the considered

direction ~δ

Wien’s displacement law:

λmax =
2898 µmK

T

Total emissive power of a black surface:

E 0(T ) =

∫ ∞
0

E 0
∞(T , λ)dλ = σT 4

where
σ = 2π5k4

15h3c2 = 5.67× 10−8 Wm−2K−4

the Stefan-Boltzmann constant



Emissivity
To characterize the radiation properties of a real surface, its
radiation is compared with the radiation of a black surface at the
same temperature.

Several emissivity can be defined:
I The hemispherical emissivity:

ε =
E

E 0

I The spectral hemispherical emissivity:

ελ(λ) =
Eλ(λ)

E 0
λ

I The directional emissivity:

ε~δ(~δ) =
I (~δ)

I 0

I The spectral directional emissivity:

ελ,~δ(λ,~δ) =
Iλ(λ,~δ)

I 0
λ



Emissivity

Properties:
I An emissivity is between 0 and 1
I A black surface has an emissivity of 1
I A grey surface is defined by

α = ε

and in this case 1 = α + ρ and thus

ε = 1− ρ



Subsection 4

Heat exchange by radiation between two surfaces



Case of infinitesimal surfaces

Heat transfer rate from dS to dS ′ :

qdS→dS′ = I (~δ)dS cos θdΩ

= I (~δ)dS cos θ
cos θ′dS ′

r2

This transfer can be compared to the total radiated pover leaving dS :

qtot = EdS = πIdS

if I is independent of ~δ

Definition of the view factor:

FdS→dS′ =
qdS→dS′

qtot
=

I (~δ)dS cos θ
cos θ′dS ′

r2

πIdS
=

cos θ cos θ′dS ′

πr2



Case of infinitesimal surfaces

Heat transfer rate from dS to dS ′ :

qdS→dS′ = FdS→dS′EdS

with

FdS→dS′ the view factor

E the missive power

dS the surface



Case of finite surfaces

Heat transfer rate from S to S ′ :

qS→S′ =

∫
S′

∫
S

I (~δ) cos θ
cos θ′

r2
dSdS ′

Expression of the view factor:

FS→S′ =

∫
S′

∫
S
I (~δ) cos θ

cos θ′

r2
dSdS ′

π
∫
S
I (~δ)dS

If I does not depend on ~δ and does not vary across the surface:

FS→S′ =
1

S

∫
S′

∫
S

cos θ cos θ′

r2
dSdS ′

And thus:

qS→S′ = FS→S′EdS



Algebra of the view factors

Reciprocity: SFS→S′ = S ′FS′→S

Concave surface

Convexe surface

Enclosure of N surfaces:

N∑
i=1

FSj→Si for j ∈ J1;NK



Algebra of the view factors

Between two planes with an angle α



Net heat energy rate exchange by a grey surface in an
enclosure

The net radiative energy rate leaving the
surface:

ϕnet = S(εE 0 − αH) = εS(E 0 − H)

= S(J − H)

=
εS

1− ε
(E 0 − J) H irradiation onto S

ρH reflection

E = εE 0 radiation

J = E + ρH =
εE 0 + (1− ε)H



Section 5
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