Python Scientific lecture notes
Release 2013.2 beta (euroscipy 2013)

EuroScipy tutorial team
Editors: Valentin Haenel, Emmanuelle Gouillart, Gaél Varoquaux

http://scipy-lectures.github.com

November 15, 2013 (2013.2-beta-62-gfcfa2fc)

Contents

Getting started with Python for science 2
Scientific computing with tools and workflow 4
1.1 Why Python? e e e e e e 4
1.2 Scientific Python building blocks 5
1.3 The interactive workflow: IPython and atexteditor 6
The Python language 10
2.1 FIrStStePS . . o o o e e e e e e e e e e e e e 10
2.2 BaSICLYPES .« v v e 11
23 Control Flow e e e 19
24 Defining functionsl e e e e e e 22
2.5 Reusing code: scriptsand modules L. oL e e e e 28
2.6 Inputand OUtput o e e e e e e e e e e e e 35
277 Standard Library e e e e e 36
2.8 Exception handlingin Python 40
2.9 Object-oriented programming (OOP) L 42
NumPy: creating and manipulating numerical data 44
3.1 The Numpy array object it e e e e e e e 44
3.2 Numerical Operations On arrays« « ¢t v v vt e e e e e e e e e e e 56
3.3 More elaborate arrays e 69
3.4 Advanced Operations L e e e e e e e e e e e e e 73
3.5 SOME EXEICISES . o v v v v o e 78
Matplotlib: plotting 83
4.1 Introduction L e e e e 84
42 Simpleplot e 85
4.3 Figures, Subplots, Axesand Ticks L 91
4.4 Other Types of Plots: examples and exercises v vt i 93
4.5 Beyondthistutorial e e e e e 100
4.6 Quickreferences L e e e e e e 102
Scipy : high-level scientific computing 106
5.1 File input/output: SCIpY .10 .+ v v v v v v e i e e e e e e e e e e e e e e e e e e 107
5.2 Special functions: scipy.special o v v it e e e e e e e e e 107
5.3 Linear algebra operations: scipy.linalg o v i i vttt 108
5.4 Fast Fourier transforms: scipy.fftpack 109
5.5 Optimization and fit: scipy.optimize L e 113
5.6 Statistics and random numbers: scipy.statso e 117
5.7 Interpolation: scipy.interpolate i v i e e e e e e e 119
5.8 Numerical integration: scipy.integrate. o i i e 120
5.9 Signal processing: scipy.signal e e 122
5.10 Image processing: sSCipy.NdiMage v v v v vt vttt e e e e e 123

IT

10

11

12

13

14

5.11 Summary exercises on scientific computingo

Getting help and finding documentation

Advanced topics

Advanced Python Constructs

7.1 Iterators, generator expressions and EENerators v vt e e e e e e e
7.2 DeCOrators v v v i e
7.3 COontext MANAZEIS « .« ¢ v v e v v e

Advanced Numpy

8.1 Lifeofndarray e
8.2 Universal functions L L e e e e
8.3 Interoperability features L.
8.4 Array siblings: chararray, maskedarray,matrix. o v v v v et
8.5 Summaryo e e e e e e e e
8.6 Contributing to Numpy/Scipy« e

Debugging code

9.1 Avoiding bugs e e e e e e e
9.2 Debuggingworkflow
9.3 Usingthe Pythondebugger. L
9.4 Debugging segmentation faultsusing gdb Lo

Optimizing code

10.1 Optimization workflow
10.2 Profiling Pythoncode e
10.3 Making code gofaster L e e e e e e e
10.4 Writing faster numerical code L oL e e e e

Sparse Matrices in SciPy

I1.1 Introduction i e
11.2 Storage Schemes L e
11.3 Linear System Solvers e
11.4 Other Interesting Packages e

Image manipulation and processing using Numpy and Scipy

12.1 Opening and writing to image files L L
12.2 Displaying images« .« o vttt e e e e e e e e e e e e
12.3 Basic manipulations e e e e e e e e e e e e e e e e e
12.4 Tmage filtering o e e e e e e e e e e e e e e e e
12.5 Feature eXtraCtion o it e e e e e e e e e e e e e
12.6 Measuring objects properties: ndimage.measurements

Mathematical optimization: finding minima of functions

13.1 Knowingyourproblem L e
13.2 Areview of the different optimizers L e
13.3 Practical guide to optimization with SCipyo
13.4 Special case: non-linear [east-squares i it e e e e e e e e e e
13.5 Optimization with CONSIraints o 0 v i i e e e e e e e e e e e e e e

Interfacing with C

14.1 Introduction i e e e e e
14.2 Python-C-Api o o e e e e e e e e e
I4.3 CLYPES .« o v v o e e e e e e e e e e e e e e e
144 SWIG o e
145 Cython o e e e e
14.6 SUMMArY ot e e e e e e e e

141

145

147
148
152
160

163
164
177
186
189
192
192

196
196
199
199
204

207
207
208
211
212

215
215
217
228
233

234
235
236
238
240
244
247

251
252
254
261
263
265

267
267
268
272
275
280
283

14.7 Further Reading and References 283

14.8 EXEICISEs o v v i it e 284
III Packages and applications 286
15 Sympy : Symbolic Mathematics in Python 288

15.1 First Steps with SymPy 289

15.2 Algebraic manipulations L e e e e e e 290

153 Calculus oL e 290

154 Equation solving i i e e e e e e e e e e e 292

15.5 Linear Algebra e 293
16 Scikit-image: image processing 295

16.1 Introduction and cOnCepts o o i it e e e e e e 295

16.2 Input/output, data types and colorspaceso 297

16.3 Image preprocessing /enhancement e 299

16.4 TImage segmentationo e e e e e e e e e 302

16.5 Measuring regions’ ProPerties v v v v v v v v e e e e e e e e e e e e e e e e e e 305

16.6 Data visualization and interaction L. Lo 305

16.7 Feature extraction for computer vision 0oL 307
17 Traits: building interactive dialogs 309

17.1 Introduction 310

172 Example e e 310

173 Whatare Traits o o o e e e e e 311

17.4 References e e 326
18 3D plotting with Mayavi 328

18.1 Mlab: the scripting interface 328

18.2 Interactive work 334

18.3 Slicing and dicing data: sources, modules and filters 335

184 Animatingthedata L. e e e e 337

18.5 Making interactive dialogs L e 338

18.6 Putting ittogether e 340
19 scikit-learn: machine learning in Python 341

19.1 Loading an example dataset e 342

19.2 Classification o 0ot e e e e e e 343

19.3 Clustering: grouping observations together 0. 346

19.4 Dimension Reduction with Principal Component Analysis 347

19.5 Putting it all together: face recognition oL oo 348

19.6 Linear model: from regression to sparsity oo 350

19.7 Model selection: choosing estimators and their parameters 351
Index 352

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Contents 1

Part I

Getting started with Python for science

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

This part of the Scipy lecture notes is a self-contained introduction to everything that is needed to use Python for
science, from the language itself, to numerical computing or plotting.

CHAPTER 1

Scientific computing with tools and workflow

authors Fernando Perez, Emmanuelle Gouillart, Ga¢l Varoquaux, Valentin Haenel

1.1 Why Python?

1.1.1 The scientist’s needs

* Get data (simulation, experiment control)
* Manipulate and process data.
* Visualize results... to understand what we are doing!

¢ Communicate results: produce figures for reports or publications, write presentations.

1.1.2 Specifications

* Rich collection of already existing bricks corresponding to classical numerical methods or basic actions: we
don’t want to re-program the plotting of a curve, a Fourier transform or a fitting algorithm. Don’t reinvent
the wheel!

 Easy to learn: computer science is neither our job nor our education. We want to be able to draw a curve,
smooth a signal, do a Fourier transform in a few minutes.

* Easy communication with collaborators, students, customers, to make the code live within a lab or a com-
pany: the code should be as readable as a book. Thus, the language should contain as few syntax symbols or
unneeded routines as possible that would divert the reader from the mathematical or scientific understanding
of the code.

« Efficient code that executes quickly... but needless to say that a very fast code becomes useless if we spend
too much time writing it. So, we need both a quick development time and a quick execution time.

* A single environment/language for everything, if possible, to avoid learning a new software for each new
problem.

1.1.3 Existing solutions

Which solutions do scientists use to work?
Compiled languages: C, C++, Fortran, etc.
* Advantages:

— Very fast. Very optimized compilers. For heavy computations, it’s difficult to outperform these lan-
guages.

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

— Some very optimized scientific libraries have been written for these languages. Example: BLAS
(vector/matrix operations)

¢ Drawbacks:

— Painful usage: no interactivity during development, mandatory compilation steps, verbose syntax (&,
5, 1}, ; etc.), manual memory management (tricky in C). These are difficult languages for non com-
puter scientists.

Scripting languages: Matlab
* Advantages:

— Very rich collection of libraries with numerous algorithms, for many different domains. Fast execution
because these libraries are often written in a compiled language.

— Pleasant development environment: comprehensive and well organized help, integrated editor, etc.
— Commercial support is available.

* Drawbacks:
— Base language is quite poor and can become restrictive for advanced users.
— Not free.

Other scripting languages: Scilab, Octave, Igor, R, IDL, etc.

e Advantages:
— Open-source, free, or at least cheaper than Matlab.
— Some features can be very advanced (statistics in R, figures in Igor, etc.)

e Drawbacks:
— Fewer available algorithms than in Matlab, and the language is not more advanced.

— Some software are dedicated to one domain. Ex: Gnuplot or xmgrace to draw curves. These programs
are very powerful, but they are restricted to a single type of usage, such as plotting.

What about Python?
e Advantages:

Very rich scientific computing libraries (a bit less than Matlab, though)

Well thought out language, allowing to write very readable and well structured code: we “code what
we think”.

Many libraries for other tasks than scientific computing (web server management, serial port access,
etc.)

Free and open-source software, widely spread, with a vibrant community.

¢ Drawbacks:
— less pleasant development environment than, for example, Matlab. (More geek-oriented).

— Not all the algorithms that can be found in more specialized software or toolboxes.

1.2 Scientific Python building blocks

Unlike Matlab, Scilab or R, Python does not come with a pre-bundled set of modules for scientific computing.
Below are the basic building blocks that can be combined to obtain a scientific computing environment:

* Python, a generic and modern computing language

— Python language: data types (string, int), flow control, data collections (lists, dictionaries), pat-
terns, etc.

1.2. Scientific Python building blocks 5

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

— Modules of the standard library.

— A large number of specialized modules or applications written in Python: web protocols, web frame-
work, etc. ... and scientific computing.

— Development tools (automatic testing, documentation generation)

(H shell -

* IPython, an advanced Python shell http://ipython.scipy.org/moin/

e Numpy : provides powerful numerical arrays objects, and routines to manipulate them.
http://www.numpy.org/
e Scipy : high-level data processing routines. Optimization, regression, interpolation, etc
http://www.scipy.org/

0.49

0.54 :
053 0.54]
e} ‘
0.52)\
Qo.51 0.48
0.501f .
gi(1)
0 02

0 04 06 08 10

e Matplotlib : 2-D visualization, “publication-ready” plots http://matplotlib.sourceforge.net/

* Mayavi : 3-D visualization http://code.enthought.com/projects/mayavi/

1.3 The interactive workflow: IPython and a text editor

Interactive work to test and understand algorithms: In this section, we describe an interactive workflow with
[Python that is handy to explore and understand algorithms.

Python is a general-purpose language. As such, there is not one blessed environment to work in, and not only one
way of using it. Although this makes it harder for beginners to find their way, it makes it possible for Python to be

1.3. The interactive workflow: IPython and a text editor 6

http://ipython.scipy.org/moin/
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://code.enthought.com/projects/mayavi/
http://ipython.org

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

used to write programs, in web servers, or embedded devices.

Reference document for this section:

IPython user manual: http://ipython.org/ipython-doc/dev/index.html

1.3.1 Command line interaction

Start ipython:

In [1]: print(’Hello world’)
Hello world

Getting help by using the ? operator after an object:

In [2]: printi

Type: builtin_function_or_method
Base Class: <type ’'builtin_function_or_method’>
String Form: <built-in function print>
Namespace: Python builtin
Docstring:
print (value, ..., sep=’ ', end='\n’, file=sys.stdout)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

1.3.2 Elaboration of the algorithm in an editor

Create a file my_file.py in a text editor. Under EPD (Enthought Python Distribution), you can use Scite,
available from the start menu. Under Python(x,y), you can use Spyder. Under Ubuntu, if you don’t already have
your favorite editor, we would advise installing Stani’s Python editor. In the file, add the following
lines:

s = "Hello world’
print (s)

Now, you can run it in IPython and explore the resulting variables:

In [1]: %run my_file.py
Hello world

In [2]: s
Out[2]: "Hello world’

In [3]: %$whos
Variable Type Data/Info

s str Hello world

From a script to functions

While it is tempting to work only with scripts, that is a file full of instructions following each other, do plan
to progressively evolve the script to a set of functions:

* A script is not reusable, functions are.

* Thinking in terms of functions helps breaking the problem in small blocks.

1.3. The interactive workflow: IPython and a text editor 7

http://ipython.org/ipython-doc/dev/index.html

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

1.3.3 IPython Tips and Tricks

The IPython user manual contains a wealth of information about using [Python, but to get you started we want to
give you a quick introduction to three useful features: history, magic functions, aliases and tab completion.

Like a UNIX shell, IPython supports command history. Type up and down to navigate previously typed commands:

In [1]: x = 10
In [2]: <UP>
In [2]: x = 10

IPython supports so called magic functions by prefixing a command with the % character. For example, the run
and whos functions from the previous section are magic functions. Note that, the setting aut omagic, which is
enabled by default, allows you to omit the preceding % sign. Thus, you can just type the magic function and it will
work.

Other useful magic functions are:
* %cd to change the current directory.

In [2]: cd /tmp
/tmp

* $timeit allows you to time the execution of short snippets using the t ime it module from the standard
library:

In [3]: timeit x = 10
10000000 loops, best of 3: 39 ns per loop

* $cpaste allows you to paste code, especially code from websites which has been prefixed with the stan-
dard python prompt (e.g. >>>) or with an ipython prompt, (e.g. in [3]):

In [5]: cpaste

Pasting code; enter ’'—--' alone on the line to stop or use Ctrl-D.
:In [3]: timeit x = 10

10000000 loops, best of 3: 85.9 ns per loop

In [6]: cpaste

Pasting code; enter ’'—--' alone on the line to stop or use Ctrl-D.
:>>> timeit x = 10

10000000 loops, best of 3: 86 ns per loop

* %debug allows you to enter post-mortem debugging. That is to say, if the code you try to execute, raises
an exception, using $debug will enter the debugger at the point where the exception was thrown.

In [7]: x === 10
File "<ipython-input-6-12fd421b5£28>", line 1
x === 10

S

SyntaxError: invalid syntax

In [8]: debug
> /home/esc/anaconda/lib/python2.7/site-packages/IPython/core/compilerop.py (87)ast_parse ()

86 and are passed to the built-in compile function."""

-———> 87 return compile (source, filename, symbol, self.flags | PyCF_ONLY_AST, 1)
88

ipdb>locals ()

{"source’: u’x === 10\n’, ’'symbol’: ’'exec’, ’'self’:

<IPython.core.compilerop.CachingCompiler instance at 0x2ad8ef0>,
"filename’: ’'<ipython-input-6-12£d421b5£28>"'}

1.3. The interactive workflow: IPython and a text editor 8

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

IPython help

* The built-in IPython cheat-sheet is accessible via the $quickref magic function.
* A list of all available magic functions is shown when typing $magic.

Furthermore IPython ships with various aliases which emulate common UNIX command line tools such as 1s to
list files, cp to copy files and rm to remove files. A list of aliases is shown when typing alias:

In [1]: alias
Total number of aliases: 16
Out[1l]:

("cat’, 'cat’),

"clear’, ’'clear’),

"cp’, 'cp -i'),

’1dir’, ’'ls -F -o —-color %1 | grep /$'),
"less’, ’'less’),

"1f’, '"ls -F -o —--color % | grep "~-"),
"1k’, 'ls -F -o —--color %1 | grep "1’),
11", ’'1ls -F -o —--color’),

"1x’, ’'ls -F -o —--color %1 | grep "-..x"),
"man’, ’'man’),

"mkdir’, ’'mkdir’),

[

(

(

(

(

(

(

(

("1s’", ’'1ls -F —--color’),
(

(

(

("more’, ’'more’),
('mv’, 'mv -1’"),
('rm’, 'rm -i’),
(

"rmdir’, ’'rmdir’)]

Lastly, we would like to mention the tab completion feature, whose description we cite directly from the IPython
manual:

Tab completion, especially for attributes, is a convenient way to explore the structure of any object you’re dealing
with. Simply type object_name.<TAB> to view the object’s attributes. Besides Python objects and keywords, tab
completion also works on file and directory names.

In [1]: x

10

In [2]: x.<TAB>

x.bit_length x.conjugate x.denominator x.imag x.numerator
x.real

In [3]: x.real.
x.real.bit_length x.real.denominator x.real.numerator

x.real.conjugate x.real.imag x.real.real

In [4]: x.real.

1.3. The interactive workflow: IPython and a text editor 9

CHAPTER 2

The Python language

authors Chris Burns, Christophe Combelles, Emmanuelle Gouillart, Gaél Varoquaux

Python for scientific computing

We introduce here the Python language. Only the bare minimum necessary for getting started with Numpy
and Scipy is addressed here. To learn more about the language, consider going through the excellent tutorial
http://docs.python.org/tutorial. Dedicated books are also available, such as http://diveintopython.org/.

@, python

Tip: Python is a programming language, as are C, Fortran, BASIC, PHP, etc. Some specific features of Python
are as follows:

* an interpreted (as opposed to compiled) language. Contrary to e.g. C or Fortran, one does not compile
Python code before executing it. In addition, Python can be used interactively: many Python interpreters
are available, from which commands and scripts can be executed.

* a free software released under an open-source license: Python can be used and distributed free of charge,
even for building commercial software.

e multi-platform: Python is available for all major operating systems, Windows, Linux/Unix, MacOS X,
most likely your mobile phone OS, etc.

* a very readable language with clear non-verbose syntax

* a language for which a large variety of high-quality packages are available for various applications, from
web frameworks to scientific computing.

* alanguage very easy to interface with other languages, in particular C and C++.

* Some other features of the language are illustrated just below. For example, Python is an object-oriented
language, with dynamic typing (the same variable can contain objects of different types during the course
of a program).

See http://www.python.org/about/ for more information about distinguishing features of Python.

2.1 First steps

Start the Ipython shell (an enhanced interactive Python shell):

10

http://docs.python.org/tutorial
http://diveintopython.org/
http://www.python.org/about/

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

* by typing “ipython” from a Linux/Mac terminal, or from the Windows cmd shell,

* or by starting the program from a menu, e.g. in the Python(x,y) or EPD menu if you have installed one of
these scientific-Python suites.

Tip: If you don’t have Ipython installed on your computer, other Python shells are available, such as the plain
Python shell started by typing “python” in a terminal, or the Idle interpreter. However, we advise to use the Ipython

shell because of its enhanced features, especially for interactive scientific computing.

Once you have started the interpreter, type

>>> print "Hello, world!"
Hello, world!

Tip: The message “Hello, world!” is then displayed. You just executed your first Python instruction, congratula-
tions!

To get yourself started, type the following stack of instructions

>>> a = 3
>>> b = 2xa
>>> type (b)
<type ’int’>
>>> print b
6

>>> axb

18

>>> b = "hello’
>>> type (b)
<type ’str’>
>>> b + b
"hellohello’
>>> 2xb
"hellohello’

Tip: Two variables a and b have been defined above. Note that one does not declare the type of an variable
before assigning its value. In C, conversely, one should write:

int a = 3;

In addition, the type of a variable may change, in the sense that at one point in time it can be equal to a value of
a certain type, and a second point in time, it can be equal to a value of a different type. b was first equal to an
integer, but it became equal to a string when it was assigned the value “ hel1lo’. Operations on integers (b=2+*a)
are coded natively in Python, and so are some operations on strings such as additions and multiplications, which
amount respectively to concatenation and repetition.

2.2 Basic types

2.2.1 Numerical types

Tip: Python supports the following numerical, scalar types:

Integer

>> 1 + 1
2
>> a = 4

2.2. Basic types 11

http://www.pythonxy.com/
http://www.enthought.com/products/epd.php

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> type (a)
<type ’int’>

Floats

>>> c = 2.1
>>> type (c)
<type ’float’>

Complex

>> a = 1.5+ 0.57
>>> a.real

1.5

>>> a.imag

0.5

>>> type(l. + 03j)
<type ’complex’>

Booleans

>>> 3 > 4

False

>>> test = (3 > 4)
>>> test

False

>>> type (test)
<type ’'bool’>

Tip: A Python shell can therefore replace your pocket calculator, with the basic arithmetic operations +, —, *, /,
% (modulo) natively implemented

>>> 7 % 3.
21.0

>>> 2x%10
1024

>> 8 % 3
2

Type conversion (casting):

>>> float (1)
1.0

2.2. Basic types 12

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Warning: Integer division

>>> 3 / 2
1

Trick: use floats:

>>> 3/ 2.

1.5

>>> a = 3

>>> b = 2
>> a / b

1

>>> a / float (b)
1.5

Tip: If you explicitly want integer division use //:

>>> 3.0 // 2
1.0

Note: The behaviour of the division operator has changed in Python 3. Please look at the python3porting
website for details.

2.2.2 Containers

Tip: Python provides many efficient types of containers, in which collections of objects can be stored.

Lists

Tip: A listis an ordered collection of objects, that may have different types. For example:

>>> L = ['red’, ’"blue’, ’'green’, ’'black’, ’"white’]
>>> type (L)
<type ’list’>

Indexing: accessing individual objects contained in the list:

>>> L[2]
"green’

Counting from the end with negative indices:

>>> L[-1]
"white’
>>> L[-2]
"black’

Warning: Indexing starts at 0 (as in C), not at 1 (as in Fortran or Matlab)!

Slicing: obtaining sublists of regularly-spaced elements:

2.2. Basic types 13

http://python3porting.com/preparing.html#use-instead-of-when-dividing-integers

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> L,

["red’, "blue’, ’'green’, ’'black’, ’"white’]
>>> L[2:4]

["green’, ’'black’]

Warning: Note that L [start : stop] contains the elements with indices i such as start<= i < stop
(1 ranging from start to stop—1). Therefore, L[start:stop] has (stop-start) elements.

Slicing syntax: L [start:stop:stride]

Tip: All slicing parameters are optional:

>>> L

["red’”, "blue’, ’'green’, ’'black’, ’"white’]
>>> L[3:]

["black’, ’'white’]

>>> L[:3]

["red’, "blue’, ’'green’]

>>> L[::2]

["red’, "green’, ’'white’]

Lists are mutable objects and can be modified:

>>> L[0] = "yellow’

>>> L

["yellow’, ’'blue’, ’'green’, ’'black’, ’'white’]
>>> L[2:4] = ['gray’, ’'purple’]

>>> L,

["yellow’, ’'blue’, ’'gray’, ’'purple’, ’'white’]

Note: The elements of a list may have different types:

>>> L = [3, -200, "hello’]
>>> L,

[3, —-200, "hello’]

>>> L[1], L[2]

(=200, "hello’)

Tip: For collections of numerical data that all have the same type, it is often more efficient to use the array
type provided by the numpy module. A NumPy array is a chunk of memory containing fixed-sized items. With

NumPy arrays, operations on elements can be faster because elements are regularly spaced in memory and more
operations are performed through specialized C functions instead of Python loops.

Tip: Python offers a large panel of functions to modify lists, or query them. Here are a few examples; for more
details, see http://docs.python.org/tutorial/datastructures.html#more-on-lists

Add and remove elements:

>>> L = ['red’, ’"blue’, ’'green’, ’'black’, ’'white’]
>>> L.append(’pink’)

>>> L

["red’”, ’'blue’, ’'green’, ’'black’, ’"white’, ’pink’]
>>> L.pop() # removes and returns the last item
"pink’

>>> L

["red’, "blue’, ’'green’, ’'black’, ’"white’]

>>> L.extend([’pink’, ’'purple’]) # extend L, in-place

>>> L

["red’, "blue’, ’'green’, ’'black’, ’'white’, ’'pink’, ’'purple’]

2.2. Basic types 14

http://docs.python.org/tutorial/datastructures.html#more-on-lists

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> L = L[:-2]
>>> L,
["red’”, "blue’, ’'green’, ’'black’, ’"white’]

Reverse:

>>> r = L[::-1]

>>> r

["white’, ’"black’, ’"green’, ’'blue’, ’'red’]
>>> r2 = list (L)

>>> r2

["red’, "blue’, ’'green’, ’'black’, ’"white’]
>>> r2.reverse() # in-place

>>> r2

["white’, ’"black’, ’"green’, ’'blue’, ’'red’]

Concatenate and repeat lists:

>>> r + L
["white’, ’'black’, ’'green’, ’'blue’, ’'red’, 'red’, ’'blue’, ’'green’, ’'black’, ’'white’]
>>> r * 2
["white’, ’"black’, ’"green’, ’'blue’, ’'red’, ’'white’, ’'black’, ’'green’, ’'blue’, ’'red’]

Tip: Sort:

>>> sorted(r) # new object
["black’, ’"blue’, ’'green’, ’'red’, ’"white’]

>>> r

["white’, ’"black’, ’"green’, ’'blue’, ’'red’]
>>> r.sort () # in-place

>>> r

["black’, ’"blue’, ’'green’, ’'red’, ’"white’]

Methods and Object-Oriented Programming

The notation r.method () (e.g. r.append(3) and L.pop ()) is our first example of object-oriented
programming (OOP). Being a 1ist, the object r owns the method function that is called using the
notation .. No further knowledge of OOP than understanding the notation . is necessary for going through
this tutorial.

2.2. Basic types 15

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Discovering methods:

Reminder: in Ipython: tab-completion (press tab)

In [28]: r.<TAB>

r.__add__ r._ iadd__ r._ setattr_
r._ class___ r.__dimul_ r._ setitem_
r._ _contains_ r.__init_ r._ setslice_
r._delattr_ r._ iter_ r._ sizeof_
r.__delitem_ r._ le_ r.__str_

r._ delslice_ r. len_ r._ subclasshook_
r._doc_ r. 1t r.append
r.__eq__ r.__mul_ r.count

r._ format__ r._ ne_ r.extend
r.__ge___ r._ new___ r.index
r.__getattribute_ r._ reduce_ r.insert
r.__getitem_ r.__reduce_ex___ r.pop
r.__getslice_ r.__repr___ r.remove
r.__gt___ r.__reversed_ r.reverse

r._ _hash___ r.__ rmul_ r.sort

Strings

Different string syntaxes (simple, double or triple quotes):

s = "Hello, how are you?’
s = "Hi, what’s up"
s = '’""Hello, # tripling the quotes allows the
how are you’’’ # the string to span more than one line
s = "HllHi,

what’s Up?" wn

In [1]: ’"Hi, what’s upi’

File "<ipython console>", line 1
"Hi, what’s up?’

A

SyntaxError: invalid syntax

The newline character is \n, and the tab character is \ t.

Tip: Strings are collections like lists. Hence they can be indexed and sliced, using the same syntax and rules.

Indexing:

>>> a = "hello"
>>> a[0]

Ihl

>>> a[l]

Iel

>>> a[-1]

Iol

Tip: (Remember that negative indices correspond to counting from the right end.)

Slicing:

>>> a = "hello, world!"

>>> a[3:6] # 3rd to 6th (excluded) elements: elements 3, 4, 5
4 l O 7 4

>>> a[2:10:2] # Syntax: a[start:stop:step]

2.2. Basic types 16

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

"lo of

>>> al[::3] # every three characters, from beginning to end

"hl ¢!’

Tip: Accents and special characters can also be handled in Unicode strings (see

http://docs.python.org/tutorial/introduction.html#unicode-strings).

A string is an immutable object and it is not possible to modify its contents. One may however create new strings
from the original one.

In [53]: a = "hello, world!"
In [54]: a[2] = "z’
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ’'str’ object does not support item assignment

In [55]: a.replace(’'1l’, ’"z’", 1)
Out [55]: ’"hezlo, world!’

In [56]: a.replace(’'1l’, "z")
Out[56]: "hezzo, worzd!’

Tip: Strings have many useful methods, such as a. replace as seen above. Remember the a . object-oriented
notation and use tab completion or help (str) to search for new methods.

See also:

Python offers advanced possibilities for manipulating strings, looking for patterns or formatting.
The interested reader is referred to http://docs.python.org/library/stdtypes.html#string-methods and
http://docs.python.org/library/string.html#new-string-formatting

String formatting:

>>> 'An integer: %i; a float: $%f; another string: %s’” % (1, 0.1, ’string’)
"An integer: 1; a float: 0.100000; another string: string’

>>> i = 102

>>> filename = ’processing_of_dataset_2d.txt’” % i
>>> filename

"processing_of_dataset_102.txt’

Dictionaries

Tip: A dictionary is basically an efficient table that maps keys to values. It is an unordered container

>>> tel = {’emmanuelle’: 5752, ’sebastian’: 5578}
>>> tel [’ francis’] = 5915
>>> tel

{’sebastian’: 5578, ’francis’: 5915, ’emmanuelle’: 5752}
>>> tel [’ sebastian’]

5578

>>> tel.keys ()

["sebastian’, ’francis’, ’emmanuelle’]

>>> tel.values|()

[5578, 5915, 5752]

>>> ' francis’ in tel

True

Tip: It can be used to conveniently store and retrieve values associated with a name (a string for a date, a name,
etc.). See http://docs.python.org/tutorial/datastructures.html#dictionaries for more information.

2.2. Basic types 17

http://docs.python.org/tutorial/introduction.html#unicode-strings
http://docs.python.org/library/stdtypes.html#string-methods
http://docs.python.org/library/string.html#new-string-formatting
http://docs.python.org/tutorial/datastructures.html#dictionaries

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

A dictionary can have keys (resp. values) with different types:

>> d = {’a’:1, 'b’:2, 3:"hello’}
>>> d
{"a’: 1, 3: ’"hello’, ’"b’': 2}

More container types

Tuples

Tuples are basically immutable lists. The elements of a tuple are written between parentheses, or just separated

by commas:

>>> t = 12345, 54321, ’'hello!’

>>> £ [0]

12345

>>> ¢

(12345, 54321, ’'hello!’)
>>> u = (0, 2)

Sets: unordered, unique items:

>>> s = set(('a’, 'b’, 'c’, "a’'))
>>> s

set(["a’, 'c’, 'b'])

>>> g.difference(("a’, "b"))

set (["c’])

2.2.3 Assignment operator

Tip: Python library reference says:

Assignment statements are used to (re)bind names to values and to modify attributes or items of

mutable objects.

In short, it works as follows (simple assignment):

1. an expression on the right hand side is evaluated, the corresponding object is created/obtained

2. aname on the left hand side is assigned, or bound, to the r.h.s. object

Things to note:

* asingle object can have several names bound to it:

In [1]: a = [1, 2, 3]
In [2]: b = a

In [3]: a

Out[3]: [1, 2, 3]

In [4]: b

Outf[4]: [1, 2, 3]

In [5]: a is b

Out [5]: True

In [6]: b[1l] = "hi!’

In [7]: a

Out[7]: [1, 'hi!’, 3]

* to change a list in place, use indexing/slices:

In [1]: a = [1, 2, 3]
In [3]: a
Out[31: [1, 2, 3]

2.2. Basic types

18

http://docs.python.org/reference/simple_stmts.html#assignment-statements

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

In [4]: a = ['a’, 'b’, '"c'] # Creates another object.
In [5]: a

Out[5]: ['a’, 'b", 'c']

In [6]: id(a)

Out[6]: 138641676

In [7]: al:] = [1, 2, 3] # Modifies object in place.
In [8]: a

out[(8]: [1, 2, 3]

In [9]: id(a)
Out[9]: 138641676 # Same as in Out[6], yours will differ...

* the key concept here is mutable vs. immutable
— mutable objects can be changed in place
— immutable objects cannot be modified once created
See also:

A very good and detailed explanation of the above issues can be found in David M. Beazley’s article Types and
Objects in Python.

2.3 Control Flow

Controls the order in which the code is executed.

2.3.1 if/elif/else

>>> if 2+4%x2 == 4:
print ’Obvious!’

Obvious'!

Blocks are delimited by indentation

Tip: Type the following lines in your Python interpreter, and be careful to respect the indentation depth. The
Ipython shell automatically increases the indentation depth after a column : sign; to decrease the indentation

depth, go four spaces to the left with the Backspace key. Press the Enter key twice to leave the logical block.

In [1]: a = 10

In [2]: if a ==
: print (1)
: elif a ==
print (2)
: else:
print (A lot’)

A lot

Indentation is compulsory in scripts as well. As an exercise, re-type the previous lines with the same indentation
in a script condition.py, and execute the script with run condition.py in Ipython.

2.3.2 for/range

Iterating with an index:

2.3. Control Flow 19

http://www.informit.com/articles/article.aspx?p=453682
http://www.informit.com/articles/article.aspx?p=453682

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> for i in range (4):
print (i)

w N = O

But most often, it is more readable to iterate over values:

>>> for word in (’cool’, ’'powerful’, ’'readable’):
print (' Python is " % word)

Python is cool

Python is powerful

Python is readable

2.3.3 while/break/continue

Typical C-style while loop (Mandelbrot problem):

>>> z =1 + 17

>>> while abs(z) < 100:
.. z = zxx2 + 1
>>> 7z

(-134+35273)

More advanced features
break out of enclosing for/while loop:

>>> z =1 + 17
>>> while abs(z) < 100:
if z.imag ==

break
z = zxx2 + 1

continue the next iteration of a loop.:

>>> a = [1, 0, 2, 4]
>>> for element in a:
if element == 0:
continue

print 1. / element

o O
N o1 O .

2.3.4 Conditional Expressions

if <OBJECT>
Evaluates to False:
* any number equal to zero (0, 0.0, 0+0j)
* an empty container (list, tuple, set, dictionary, ...)
* False, None
Evaluates to True:
* everything else

a == b Tests equality, with logics:

2.3. Control Flow 20

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> 1 ==
True

a is b Tests identity: both sides are the same object:

>>> 1 is 1.

False

>>> a = 1
>> b =1
>>> a is b
True

a in b For any collection b: b contains a

>> b = [1, 2, 3]
>>> 2 in b

True

>>> 5 in b

False

If b is a dictionary, this tests that a is a key of b.

2.3.5 Advanced iteration

Iterate over any sequence

You can iterate over any sequence (string, list, keys in a dictionary, lines in a file, ...):

>>> vowels = ’'aeiouy’

>>> for i in ’'powerful’:
if 1 in vowels:
print (i),

>>> message = "Hello how are you?"
>>> message.split () # returns a list

["Hello’, ’"how’, "are’, ’'you?’]

>>> for word in message.split () :
print word

Hello

how

are
you?

Tip: Few languages (in particular, languages for scientific computing) allow to loop over anything but inte-
gers/indices. With Python it is possible to loop exactly over the objects of interest without bothering with indices

you often don’t care about. This feature can often be used to make code more readable.

Warning: Not safe to modify the sequence you are iterating over.

Keeping track of enumeration number

Common task is to iterate over a sequence while keeping track of the item number.

¢ Could use while loop with a counter as above. Or a for loop:

2.3. Control Flow 21

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> words = (’cool’, ’'powerful’, ’'readable’)
>>> for i in range (0, len(words)):
print i, words[i]
0 cool
1 powerful
2 readable

* But, Python provides enumerate keyword for this:

>>> for index, item in enumerate (words) :
print index, item

0 cool

1 powerful

2 readable

Looping over a dictionary

Use iteritems:

>>d = {'a": 1, 'b’:1.2, 'c’:13j}

>>> for key, val in d.iteritems():
print (' Key: has value: "% (key, val))
Key: a has value: 1
Key: ¢ has value: 1j
Key: b has value: 1.2

2.3.6 List Comprehensions

>>> [ix%x2 for i in range(4)]
[0, 1, 4, 9]

Exercise

Compute the decimals of Pi using the Wallis formula:

o0

442
m=2]] 42 — 1
=1

2.4 Defining functions

2.4.1 Function definition

In [56]: def test():
e print (' in test function’)

In [57]: test ()
in test function

Warning: Function blocks must be indented as other control-flow blocks.

2.4. Defining functions 22

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

2.4.2 Return statement

Functions can optionally return values.

In [6]: def disk_area(radius):
return 3.14 % radius * radius

In [8]: disk_area(l.5)
Out [8]: 7.0649999999999995

Note: By default, functions return None.

Note: Note the syntax to define a function:
¢ the def keyword;

* is followed by the function’s name, then
* the arguments of the function are given between parentheses followed by a colon.
¢ the function body;

e and return object for optionally returning values.

2.4.3 Parameters

Mandatory parameters (positional arguments)

In [81]: def double_it (x):
e return x * 2

In [82]: double_it (3)
Oout [82]: 6

In [83]: double_it ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: double_it () takes exactly 1 argument (0 given)

Optional parameters (keyword or named arguments)

In [84]: def double_it (x=2):
e return x * 2

In [85]: double_it ()
Out [85]: 4

In [86]: double_it (3)
Out [86]: 6

Keyword arguments allow you to specify default values.

2.4. Defining functions 23

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Warning:

problematic when using mutable types (e.g. dictionary or list) and modifying them in the function body, since

Default values are evaluated when the function is defined, not when it is called. This can be

the modifications will be persistent across invocations of the function.
Using an immutable type in a keyword argument:

In [124]: bigx = 10
In [125]: def double_it (x=bigx):
P return x » 2
In [126]: bigx = 1e9 # Now really big
In [128]: double_it ()
Out[128]: 20

Using an mutable type in a keyword argument (and modifying it inside the function body):

In [2]: def add_to_dict(args={'a’: 1, 'b’: 2}):
: for i in args.keys{():
args[i] += 1
print args
In [3]: add_to_dict
Out [3]: <function _ main_ .add_to_dict>
In [4]: add_to_dict ()
{*a’: 2, '"b’': 3}
In [5]: add_to_dict ()
{*a’: 3, '"b’': 4}
In [6]: add_to_dict ()
{*a’: 4, '"b’': 5}

Tip: More involved example implementing python’s slicing:

In [98]:

In [101]:

In [102]:
Oout[102]:

In [103]:
Out [103]:

In [104]:
Out [104] :

In [105]:
Out [1057:

In [106]:
Out[106]:

def slicer (seq,

start=None, stop=None, step=None):
"""Implement basic python slicing."""
return seqg[start:stop:step]

rhyme = ’‘one fish, two fish, red fish, blue fish’.split ()

rhyme

["one’, 'fish,’, ’"two’, ’"fish,’, ’'red’, ’'fish,’, ’"blue’, ’"fish’]
slicer (rhyme)

["one’, ’"fish,’, '"two’, ’'fish,’, ’"red’, ’'fish,’, ’'blue’, ’"fish’]
slicer (rhyme, step=2)

["one’, "two’, ’'red’, "blue’]

slicer (rhyme, 1, step=2)

["fish,’, ’"fish,’, ’'fish,’, ’"fish’]

slicer (rhyme, start=1, stop=4, step=2)

[’ fish,’, ’fish,’]

The order of the keyword arguments does not matter:

2.4. Defining functions

24

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

In [107]: slicer(rhyme, step=2, start=1,

Out [107]: [’"fish,’, "fish,’]

but it is good practice to use the same ordering as the function’s definition.

Keyword arguments are a very convenient feature for defining functions with a variable number of arguments,

especially when default values are to be used in most calls to the function.

2.4.4 Passing by value

Tip: Can you modify the value of a variable inside a function? Most languages (C, Java, ...) distinguish “passing
by value” and “passing by reference”. In Python, such a distinction is somewhat artificial, and it is a bit subtle

whether your variables are going to be modified or not. Fortunately, there exist clear rules.

Parameters to functions are references to objects, which are passed by value. When you pass a variable to a
function, python passes the reference to the object to which the variable refers (the value). Not the variable itself.

If the value passed in a function is immutable, the function does not modify the caller’s variable. If the value is

mutable, the function may modify the caller’s variable in-place:

>>> def try_to_modify(x, y, z):
x = 23
y.append (42)
z = [99] # new reference
print (x)
print (y)
print (z)

>>> a = 77 # immutable variable
>>> Db [99] # mutable variable
>>> ¢ = [28]

>>> try_to_modify(a, b, c)

23

[99, 42]

[99]

>>> print (a)

77

>>> print (b)

[99, 42]

>>> print (c)

[28]

Functions have a local variable table called a local namespace.

The variable x only exists within the function try_to_modify.

2.4.5 Global variables

Variables declared outside the function can be referenced within the function:

In [114]: x = 5

In [115]: def addx(y):
..... 3 return x + y

In [116]: addx(10)
Out[116]: 15

2.4. Defining functions

25

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

But these “global” variables cannot be modified within the function, unless declared global in the function.

This doesn’t work:

In [117]: def setx(y):
X =Y
et print (‘x is %d’ % x)

In [118]: setx(10)

x is 10

In [120]: x
Out[120]: 5
This works:

In [121]: def setx(y):
..... g global x
e X =y
et print ('x is %d’ % x)

In [122]: setx(10)
x is 10

In [123]:
Out [123]: 10

X

2.4.6 Variable number of parameters

Special forms of parameters:
* xargs: any number of positional arguments packed into a tuple

* «xxkwargs: any number of keyword arguments packed into a dictionary

In [35]: def variable_args(xargs, xxkwargs):
et print ’'args is’, args
e print 'kwargs is’, kwargs

In [36]: variable_args(’one’, ’'two’, x=1, y=2, z=3)
args is ('one’, "two’)
kwargs is {'y’: 2, 'x': 1, "z': 3}

2.4.7 Docstrings

Documentation about what the function does and its parameters. General convention:

In [67]: def funcname (params) :
e """Concise one-line sentence describing the function.

et Extended summary which can contain multiple paragraphs.

mmon

50008 # function body
et pass

In [68]: funcnamei

2.4. Defining functions

26

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Type: function

Base Class: type ’function’>

String Form: <function funcname at OxeaalOf0>
Namespace: Interactive

File: <ipython console>

Definition: funcname (params)

Docstring:

Concise one-line sentence describing the function.

Extended summary which can contain multiple paragraphs.

Note: Docstring guidelines

For the sake of standardization, the Docstring Conventions webpage documents the semantics and conventions
associated with Python docstrings.

Also, the Numpy and Scipy modules have defined a precise standard for documenting scientific func-
tions, that you may want to follow for your own functions, with a Parameters section, an
Examples section, etc. See http://projects.scipy.org/mumpy/wiki/CodingStyleGuidelines#docstring-standard
and http://projects.scipy.org/numpy/browser/trunk/doc/example.py#L.37

2.4.8 Functions are objects

Functions are first-class objects, which means they can be:
e assigned to a variable
* an item in a list (or any collection)
e passed as an argument to another function.

In [38]: va = variable_args

In [39]: va(’'three’, x=1, y=2)
args is (’three’,)
kwargs is {’'y’: 2, ’'x’': 1}

2.4.9 Methods

Methods are functions attached to objects. You’ve seen these in our examples on lists, dictionaries, strings, etc...

2.4.10 Exercises

Exercise: Fibonacci sequence

Write a function that displays the n first terms of the Fibonacci sequence, defined by:
ceu 0 =1; u_l =1
* u_(n+2) = u_(n+l) + u_n

2.4. Defining functions 27

http://www.python.org/dev/peps/pep-0257
http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines#docstring-standard
http://projects.scipy.org/numpy/browser/trunk/doc/example.py#L37

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Exercise: Quicksort

Implement the quicksort algorithm, as defined by wikipedia:
function quicksort(array) var list less, greater if length(array) < 2
return array
select and remove a pivot value pivot from array for each x in array
if X < pivot + 1 then append x to less else append x to greater
return concatenate(quicksort(less), pivot, quicksort(greater))

2.5 Reusing code: scripts and modules

For now, we have typed all instructions in the interpreter. For longer sets of instructions we need to change track
and write the code in text files (using a text editor), that we will call either scripts or modules. Use your favorite
text editor (provided it offers syntax highlighting for Python), or the editor that comes with the Scientific Python
Suite you may be using (e.g., Scite with Python(x,y)).

2.5.1 Scripts

Tip: Let us first write a script, that is a file with a sequence of instructions that are executed each time the script
is called. Instructions may be e.g. copied-and-pasted from the interpreter (but take care to respect indentation

rules!).

The extension for Python files is . py. Write or copy-and-paste the following lines in a file called test . py

message = "Hello how are you?"
for word in message.split () :
print word

Tip: Let us now execute the script interactively, that is inside the Ipython interpreter. This is maybe the most
common use of scripts in scientific computing.

Note: in Ipython, the syntax to execute a script is $run script.py. For example,

In [1]: %run test.py
Hello

how

are

you?

In [2]: message
Out[2]: 'Hello how are you?’

The script has been executed. Moreover the variables defined in the script (such as message) are now available
inside the interpreter’s namespace.

Tip: Other interpreters also offer the possibility to execute scripts (e.g., execfile in the plain Python inter-
preter, etc.).

It is also possible In order to execute this script as a standalone program, by executing the script inside a shell
terminal (Linux/Mac console or cmd Windows console). For example, if we are in the same directory as the test.py
file, we can execute this in a console:

S python test.py
Hello
how

2.5. Reusing code: scripts and modules 28

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

are
you?

Tip: Standalone scripts may also take command-line arguments

Infile.py:
import sys

print sys.argv

S python file.py test arguments
["file.py’, 'test’, "arguments’]

docopt.

Warning: Don’t implement option parsing yourself. Use modules such as optparse, argparse or

2.5.2 Importing objects from modules
In [1]: import os

In [2]: os

Out [2]: <module ’'os’ from ’/usr/lib/python2.6/os.pyc’>

In [3]: os.listdir(’.’)
Out [3]:

["conf.py’,
"basic_types.rst’,
"control_flow.rst’,
"functions.rst’,
"python_language.rst’,
"reusing.rst’,

"file_ io.rst’,
"exceptions.rst’,
"workflow.rst’,
"index.rst’]

And also:

In [4]: from os import listdir

Importing shorthands:

In [5]: import numpy as np

Warning:

from os import =

* Creates possible name clashes between modules.

This is called the star import and please, Use it with caution
* Makes the code harder to read and understand: where do symbols come from?
* Makes it impossible to guess the functionality by the context and the name (hint: os . name is the name
of the OS), and to profit usefully from tab completion.
 Restricts the variable names you can use: os . name might override name, or vise-versa.

* Makes the code impossible to statically check for undefined symbols.

Tip: Modules are thus a good way to organize code in a hierarchical way. Actually, all the scientific computing

tools we are going to use are modules:

2.5. Reusing code: scripts and modules

29

http://docs.python.org/2.7/library/os.html#os.name
http://docs.python.org/2.7/library/os.html#os.name

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> import numpy as np # data arrays

>>> np.linspace (0, 10, 6)

array ([0., 2oy 4., Goy 8., 10.1])
>>> import scipy # scientific computing

In Python(x,y), Ipython(x,y) executes the following imports at startup:

>>> import numpy
>>> import numpy as np
>>> from pylab import =«
>>> import scipy

and it is not necessary to re-import these modules.

2.5.3 Creating modules

Tip: If we want to write larger and better organized programs (compared to simple scripts), where some objects
are defined, (variables, functions, classes) and that we want to reuse several times, we have to create our own

modules.

Let us create a module demo contained in the file demo . py:

"A demo module."

def print_b():
"Prints b."
print 'Db’

def print_al():
"Prints a."
print ’a’

Tip: In this file, we defined two functions print_a and print_b. Suppose we want to call the print_a
function from the interpreter. We could execute the file as a script, but since we just want to have access to the

function print_a, we are rather going to import it as a module. The syntax is as follows.

In [1]: import demo
In [2]: demo.print_al()
a

In [3]: demo.print_b()
b

Importing the module gives access to its objects, using the module.object syntax. Don’t forget to put the
module’s name before the object’s name, otherwise Python won’t recognize the instruction.

Introspection

In [4]: demoi

Type: module

Base Class: <type ’'module’>

String Form: <module ’demo’ from ’'demo.py’>

Namespace: Interactive

File: /home/varoquau/Projects/Python_talks/scipy_2009_tutorial/source/

2.5. Reusing code: scripts and modules 30

emo.py

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Docstring:
A demo module.

In [5]: who
demo

In [6]: whos
Variable Type Data/Info

demo module <module ’demo’ from ’demo.py’>

In [7]: dir (demo)
out[7]:
["__builtins__ ',
' __doc__’,
r__file 7,

! __name__ ',

' __package__',
rer,

14 dl ,

"print_a’,
"print_Db’]

In [8]: demo.

demo._ _builtins_ demo.__init_ demo.__ _str__

demo._ _class_ demo.__ _name_ demo.__ _subclasshook_
demo._ delattr_ demo._ _new___ demo.c

demo.__dict___ demo.__package___ demo.d

demo.__ _doc_ demo.__ reduce_ demo.print_a

demo._ file demo.__ reduce_ex_ demo.print_b

demo._ format_ demo.__repr___ demo.py
demo.__getattribute__ demo.__setattr demo.pyc

demo._ _hash_ demo._ sizeof_

Importing objects from modules into the main namespace

In [9]: from demo import print_a, print_b

In [10]: whos

Variable Type Data/Info

demo module <module ’'demo’ from ’'demo.py’>
print_a function <function print_a at 0xb7421534>
print_b function <function print_b at 0xb74214c4>

In [11]: print_a()
a

Warning: Module caching
Modules are cached: if you modify demo . py and re-import it in the old session, you will get the
old one.

Solution:

In [10]: reload(demo)

2.5.4 °_main__’ and module loading

File demo2 . py:

2.5. Reusing code: scripts and modules 31

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

import sys

def print_al():
"Prints a."
print 'a’

print sys.argv

4 7.

main 8

if _ name_ =
print_a()

Importing it:

In [11]: import demo2
b

In [12]: import demo2

Running it:

In [13]: %run demo2
b
a

2.5.5 Scripts or modules? How to organize your code

Note: Rule of thumb
* Sets of instructions that are called several times should be written inside functions for better code reusability.
* Functions (or other bits of code) that are called from several scripts should be written inside a module,

so that only the module is imported in the different scripts (do not copy-and-paste your functions in the
different scripts!).

How modules are found and imported

When the import mymodule statement is executed, the module mymodule is searched in a given list of
directories. This list includes a list of installation-dependent default path (e.g., /usr/lib/python) as well as
the list of directories specified by the environment variable PYTHONPATH.

The list of directories searched by Python is given by the sys.path variable

In [1]: import sys

In [2]: sys.path
Oout[2]:
[,,I
" /home/varoquau/.local/bin’,
" /usr/lib/python2.7’,
" /home/varoquau/.local/lib/python2.7/site-packages’,
" /usr/lib/python2.7/dist-packages’,
" /usr/local/lib/python2.7/dist-packages’,
o]

Modules must be located in the search path, therefore you can:

e write your own modules within directories already defined in the search path (e.g.
SHOME/.local/lib/python2.7/dist-packages). You may use symbolic links (on Linux) to
keep the code somewhere else.

2.5. Reusing code: scripts and modules 32

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

* modify the environment variable PYTHONPATH to include the directories containing the user-defined mod-
ules.

Tip: On Linux/Unix, add the following line to a file read by the shell at startup (e.g. /etc/profile, .profile)

export PYTHONPATH=$PYTHONPATH:/home/emma/user_defined_modules

On Windows, http://support.microsoft.com/kb/310519 explains how to handle environment variables.

or modify the sys.path variable itself within a Python script.

Tip:
import sys
new_path = ’/home/emma/user_defined _modules’

if new_path not in sys.path:
sys.path.append (new_path)

This method is not very robust, however, because it makes the code less portable (user-dependent path) and
because you have to add the directory to your sys.path each time you want to import from a module in this

directory.

See http://docs.python.org/tutorial/modules.html for more information about modules.

2.5.6 Packages

A directory that contains many modules is called a package. A package is a module with submodules (which can
have submodules themselves, etc.). A special file called __init__ .py (which may be empty) tells Python that
the directory is a Python package, from which modules can be imported.

$ 1s

cluster/ io/ README . txt@ stsci/

_ _config__ .py@ LATEST.txt@ setup.pyl _ _svn_version__ .pyQ@
__config___.pyc 1lib/ setup.pyc __svn_version__ .pyc

constants/ linalg/ setupscons.py@ THANKS.txt(@

fftpack/ linsolve/ setupscons.pyc TOCHANGE.txt(@

__init__ .py@ maxentropy/ signal/ version.py@

__init__ .pyc misc/ sparse/ version.pyc

INSTALL.txtQ@ ndimage/ spatial/ weave/

integrate/ odr/ special/

interpolate/ optimize/ stats/

$ cd ndimage

S 1s

doccer.py@ fourier.pyc interpolation.py@ morphology.pyc setup.pyc

doccer.pyc info.py@
setupscons.py@
filters.py@ info.pyc
setupscons.pycC

filters.pyc __init___ .py@ measurements.pyc _ni_support.pyc tests/
fourier.py@ __init__.pyc morphology.py@ setup.py@
From Ipython:

In [1]: import scipy

In [2]: scipy._ file_
out[2]: ’/usr/lib/python2

interpolation.pyc

measurements.py(@

.6/dist-packages/scipy/__init__ .pyc

In [3]: import scipy.version

In [4]: scipy.version.version

_nd_image.so

_ni_support.py@

’

2.5. Reusing code: scripts and modules

33

http://support.microsoft.com/kb/310519
http://docs.python.org/tutorial/modules.html

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Out[4]: "0.7.0"
In [5]: import scipy.ndimage.morphology
In [6]: from scipy.ndimage import morphology

In [17]: morphology.binary_dilationi

Type: function

Base Class: <type ’function’>

String Form: <function binary_dilation at 0x9bedd84>

Namespace: Interactive

File: /usr/lib/python2.6/dist-packages/scipy/ndimage/morphology.py
Definition: morphology.binary_dilation (input, structure=None,

iterations=1, mask=None, output=None, border_value=0, origin=0,
brute_force=False)
Docstring:

Multi-dimensional binary dilation with the given structure.

An output array can optionally be provided. The origin parameter
controls the placement of the filter. If no structuring element is
provided an element is generated with a squared connectivity equal
to one. The dilation operation is repeated iterations times. If
iterations is less than 1, the dilation is repeated until the
result does not change anymore. If a mask is given, only those
elements with a true value at the corresponding mask element are
modified at each iteration.

2.5.7 Good practices

* Use meaningful object names

¢ Indentation: no choice!

Tip: Indenting is compulsory in Python! Every command block following a colon bears an additional
indentation level with respect to the previous line with a colon. One must therefore indent after def £ () :

or while:. At the end of such logical blocks, one decreases the indentation depth (and re-increases it if a
new block is entered, etc.)

Strict respect of indentation is the price to pay for getting rid of { or ; characters that delineate logical
blocks in other languages. Improper indentation leads to errors such as

IndentationError: unexpected indent (test.py, line 2)

All this indentation business can be a bit confusing in the beginning. However, with the clear indentation,
and in the absence of extra characters, the resulting code is very nice to read compared to other languages.

* Indentation depth: Inside your text editor, you may choose to indent with any positive number of spaces
(1, 2, 3, 4, ...). However, it is considered good practice to indent with 4 spaces. You may configure your
editor to map the Tab key to a 4-space indentation. In Python(x,y), the editor is already configured this
way.

¢ Style guidelines

Long lines: you should not write very long lines that span over more than (e.g.) 80 characters. Long lines
can be broken with the \ character

>>> long_line = "Here is a very very long line \
that we break in two parts."

Spaces

Write well-spaced code: put whitespaces after commas, around arithmetic operators, etc.:

2.5. Reusing code: scripts and modules 34

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> g = yes

1 #
>>> a=1 # too cramped

A certain number of rules for writing “beautiful” code (and more importantly using the same conventions
as anybody else!) are given in the Style Guide for Python Code.

Quick read

If you want to do a first quick pass through the Scipy lectures to learn the ecosystem, you can directly skip
to the next chapter: NumPy: creating and manipulating numerical data (page 44).

The remainder of this chapter is not necessary to follow the rest of the intro part. But be sure to come back
and finish this chapter later.

2.6 Input and Output

To be exhaustive, here are some information about input and output in Python. Since we will use the Numpy
methods to read and write files, you may skip this chapter at first reading.

We write or read strings to/from files (other types must be converted to strings). To write in a file:

>>> f = open(’'workfile’, ’'w’) # opens the workfile file
>>> type (f)

<type "file’>

>>> f.write(’This is a test \nand another test’)

>>> f.close()

To read from a file

In [1]: £ = open(’workfile’, ’'r’)

In [2]: s

f.read()
In [3]: print(s)
This is a test

and another test

In [4]: f.close()

For more details: http://docs.python.org/tutorial/inputoutput.html

2.6.1 lterating over a file
In [6]: f = open(’workfile’, 'r’)

In [7]: for line in f:
print line

This is a test
and another test

In [8]: f.close()

File modes

e Read-only: r

2.6. Input and Output 35

http://www.python.org/dev/peps/pep-0008
http://docs.python.org/tutorial/inputoutput.html

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

e Write-only: w
— Note: Create a new file or overwrite existing file.
* Append afile: a
* Read and Write: r+
* Binary mode: b

— Note: Use for binary files, especially on Windows.

2.7 Standard Library

Note: Reference document for this section:

* The Python Standard Library documentation: http://docs.python.org/library/index.html

* Python Essential Reference, David Beazley, Addison-Wesley Professional

2.7.1 os module: operating system functionality

“A portable way of using operating system dependent functionality.”

Directory and file manipulation

Current directory:

In [17]: os.getcwd()
Out [17]: "/Users/cburns/src/scipy2009/scipy_2009_tutorial/source’

List a directory:

In [31]: os.listdir(os.curdir)
Out [317]:

[".index.rst.swo’,

’ .python_language.rst.swp’,

’ .view_array.py.swp’,
" _static’,
! _templates’,
"basic_types.rst’,
"conf.py’,
"control_flow.rst’,

’debugging.rst’,

Make a directory:

In [32]: os.mkdir(’ junkdir’)

In [33]: ’junkdir’ in os.listdir (os.curdir)
Out [33]: True

Rename the directory:

In [36]: os.rename (’ junkdir’, ’foodir’)

In [37]: ’junkdir’ in os.listdir (os.curdir)
Out [37]: False

In [38]: "foodir’ in os.listdir(os.curdir)

2.7. Standard Library 36

http://docs.python.org/library/index.html

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Out [38]: True

In [41]: os.rmdir ('’ foodir’)

In [42]: ’"foodir’ in os.listdir (os.curdir)
Out [42]: False

Delete a file:

In [44]: fp = open(’ junk.txt’, ’'w’)

In [45]: fp.close()

In [46]: 'junk.txt’ in os.listdir (os.curdir)
Out [46]: True

In [47]: os.remove (’ junk.txt’)

In [48]: ’junk.txt’ in os.listdir (os.curdir)
Out [48]: False

os.path: path manipulations

os.path provides common operations on pathnames.

In [70]:

In [71]:

In [72]:

In [73]:
Out [73]:

In [74]:
Out [74] :
In [78]:
Oout [78]:

In [79]:
out [79]:

In [80]:
Out [807 :

In [84]:
Out [84]:

In [86]:
Out [86]:

In [87]:
Oout [87]:

In [88]:
Oout [88]:

In [92]:
out[92]:

fp = open(’ junk.txt’, 'w’)
fp.close ()
a = os.path.abspath(’ junk.txt’)

a
" /Users/cburns/src/scipy2009/scipy_2009_tutorial/source/junk.txt’

os.path.split (a)
(" /Users/cburns/src/scipy2009/scipy_2009_tutorial/source’,
"Junk.txt’)

os.path.dirname (a)
" /Users/cburns/src/scipy2009/scipy_2009_tutorial/source’

os.path.basename (a)
" junk.txt’

os.path.splitext (os.path.basename (a))
(" junk’, " .txt’)

os.path.exists (’ junk.txt’)
True

os.path.isfile (’ junk.txt’)
True

os.path.isdir (’ junk.txt’)
False

os.path.expanduser (' ~/local’)
" /Users/cburns/local’

os.path.join(os.path.expanduser (’~"), ’local’, ’'bin’)
" /Users/cburns/local/bin’

2.7. Standard Library 37

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Running an external command

In [8]: os.system(’1ls’)

basic_types.rst demo.py functions.rst python_language.rst standard_libre
control_flow.rst exceptions.rst io.rst python-logo.png
demo2.py first_steps.rst oop.rst reusing_code.rst

Note: Alternative to os.system

A noteworthy alternative to os . system is the sh module. Which provides much more convenient ways to obtain
the output, error stream and exit code of the external command.

In [20]: import sh
In [20]: com = sh.ls()

In [21]: print com

basic_types.rst exceptions.rst oop.rst standard_library.rst
control_flow.rst first_steps.rst python_language.rst

demo2.py functions.rst python-logo.png

demo.py io.rst reusing_code.rst

In [22]: print com.exit_code

0
In [23]: type (com)
Out [23]: sh.RunningCommand

Walking a directory

os.path.walk generates a list of filenames in a directory tree.

In [10]: for dirpath, dirnames, filenames in os.walk (os.curdir):
e for fp in filenames:
et print os.path.abspath (fp)

/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/.index.rst.swo
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/.view_array.py.swp
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/basic_types.rst
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/conf.py
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/control_flow.rst

Environment variables:

In [9]: import os

In [11]: os.environ.keys()
Out[11]:
[,_,I
'FSLDIR’,
' TERM_PROGRAM_VERSION’,
’FSLREMOTECALL' ,
"USER’,
' HOME' ,
'PATH’,
"pPSl’,
' SHELL' ,
"EDITOR’,
" WORKON_HOME ,

2.7. Standard Library 38

Ary.rst

http://amoffat.github.com/sh/

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

"PYTHONPATH' ,

In [12]: os.environ[’/PYTHONPATH']

Out[12]: ’'.:/Users/cburns/src/utils:/Users/cburns/src/nitools:
/Users/cburns/local/lib/python2.5/site-packages/:
/usr/local/lib/python2.5/site-packages/:
/Library/Frameworks/Python. framework/Versions/2.5/1ib/python2.5’

In [16]: os.getenv (’PYTHONPATH’)

Out[16]: ’.:/Users/cburns/src/utils:/Users/cburns/src/nitools:
/Users/cburns/local/lib/python2.5/site-packages/:
/usr/local/lib/python2.5/site-packages/:
/Library/Frameworks/Python. framework/Versions/2.5/1ib/python2.5’

2.7.2 shutil: high-level file operations

The shutil provides useful file operations:
e shutil.rmtree: Recursively delete a directory tree.
e shutil.move: Recursively move a file or directory to another location.

e shutil.copy: Copy files or directories.

2.7.3 glob: Pattern matching on files

The glob module provides convenient file pattern matching.

Find all files ending in . txt:

In [18]: import glob

In [19]: glob.glob(’x.txt’)
Out[19]: ["holy_grail.txt’, ’junk.txt’, ’'newfile.txt’]

2.7.4 sys module: system-specific information

System-specific information related to the Python interpreter.

* Which version of python are you running and where is it installed:

In [117]: sys.platform
Out[117]: "darwin’

In [118]: sys.version
Oout[118]: ’2.5.2 (r252:60911, Feb 22 2008, 07:57:53) \n
[GCC 4.0.1 (Apple Computer, Inc. build 5363)]’

In [119]: sys.prefix
Out[119]: ’/Library/Frameworks/Python.framework/Versions/2.5’

* List of command line arguments passed to a Python script:

In [100]: sys.argv
Out [100]: [’/Users/cburns/local/bin/ipython’]

sys.path is a list of strings that specifies the search path for modules. Initialized from PYTHONPATH:

2.7. Standard Library

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

In [121]: sys.path

Out[121]:

[,

" /Users/cburns/local/bin’,

" /Users/cburns/local/lib/python2.5/site-packages/grin-1.1-py2.5.egg’,

" /Users/cburns/local/lib/python2.5/site-packages/argparse-0.8.0-py2.5.egg’,
" /Users/cburns/local/lib/python2.5/site-packages/urwid-0.9.7.1-py2.5.eqgg’,
" /Users/cburns/local/lib/python2.5/site-packages/yolk-0.4.1-py2.5.eqgg’,

" /Users/cburns/local/lib/python2.5/site-packages/virtualenv-1.2-py2.5.egqg’,

2.7.5 pickle: easy persistence

Useful to store arbitrary objects to a file. Not safe or fast!
In [1]: import pickle

In [2]: 1 = [1, None, ’Stan’]

In [3]: pickle.dump(l, file(’test.pkl’, ’w’))

In [4]: pickle.load(file(’'test.pkl’))
Out[4]: [1l, None, ’'Stan’]

Exercise

Write a program to search your PYTHONPATH for the module site.py.

path_site

2.8 Exception handling in Python

It is highly unlikely that you haven’t yet raised Exceptions if you have typed all the previous commands of the
tutorial. For example, you may have raised an exception if you entered a command with a typo.

Exceptions are raised by different kinds of errors arising when executing Python code. In your own code, you
may also catch errors, or define custom error types. You may want to look at the descriptions of the the built-in
Exceptions when looking for the right exception type.

2.8.1 Exceptions

Exceptions are raised by errors in Python:

ZeroDivisionError: integer division or modulo by zero

TypeError: unsupported operand type(s) for +: ’"int’ and ’str’
In [3]: d = {1:1, 2:2}

KeyError: 3

2.8. Exception handling in Python 40

http://docs.python.org/2/library/exceptions.html
http://docs.python.org/2/library/exceptions.html

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

IndexError: list index out of range

AttributeError: ’list’ object has no attribute ’ foobar’

As you can see, there are different types of exceptions for different errors.

2.8.2 Catching exceptions

try/except

In [10]: while True:

..... try:

e x = int (raw_input ('Please enter a number: ’))
e break

et except ValueError:

e print (' That was no valid number. Try again...’)

Please enter a number: a
That was no valid number. Try again...
Please enter a number: 1

In [9]: x

Out[9]: 1

try/finally

In [10]: try:
e X = int (raw_input ('Please enter a number: ’))
....: finally:

et print (' Thank you for your input’)

Please enter a number: a
Thank you for your input

ValueError: invalid literal for int () with base 10: ’a’

Important for resource management (e.g. closing a file)

Easier to ask for forgiveness than for permission

In [11]: def print_sorted(collection):
50008 try:
e collection.sort ()
et except AttributeError:
el pass
50003 print (collection)

In [12]: print_sorted([1l, 3, 2])
[1, 2, 3]

2.8. Exception handling in Python 41

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

In [13]: print_sorted(set ((1, 3, 2)))
set ([1, 2, 31)

In [14]: print_sorted(’132")
132

2.8.3 Raising exceptions

* Capturing and reraising an exception:

In [15]: def filter_name (name) :
R try:
e name = name.encode ('ascii’)
ceelt except UnicodeError, e:
e if name == ’'Gaé&l’:
et print (' OK, Gaél’)
e else:
ce raise e
500085 return name

In [16]: filter_name (’Ga&l’)
OK, Gaél
Oout[16]: ’'Ga\xe3\xabl’

In [17]: filter_name (’Stéfan’)

UnicodeDecodeError: ’ascii’ codec can’t decode byte 0xc3 in position 2: ordinal

» Exceptions to pass messages between parts of the code:

In [17]: def achilles_arrow(x) :
e if abs(x - 1) < le-3:
et raise Stoplteration
60008 x=1- (1-x)/2.

R return x

In [19]: while True:
00008 try:
e x = achilles_arrow(x)
el except StoplIteration:
e break

In [20]: x
Out [20]: 0.9990234375

Use exceptions to notify certain conditions are met (e.g. Stoplteration) or not (e.g. custom error raising)

2.9 Object-oriented programming (OOP)

Python supports object-oriented programming (OOP). The goals of OOP are:
* to organize the code, and

¢ to re-use code in similar contexts.

2.9. Object-oriented programming (OOP) 42

not in range

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

Here is a small example: we create a Student class, which is an object gathering several custom functions (meth-
ods) and variables (attributes), we will be able to use:

>>> class Student (object) :
def _ init_ (self, name):
self.name = name
def set_age(self, age):
self.age = age
def set_major(self, major):
self.major = major

>>> anna = Student (’anna’)
>>> anna.set_age (21)
>>> anna.set_major ('physics’)

In the previous example, the Student class has __init_ , set_age and set_major methods. Its at-
tributes are name, age and major. We can call these methods and attributes with the following notation:
classinstance.method or classinstance.attribute. The __init___ constructor is a special
method we call with: MyClass (init parameters if any).

Now, suppose we want to create a new class MasterStudent with the same methods and attributes as the previous
one, but with an additional internship attribute. We won’t copy the previous class, but inherit from it:

>>> class MasterStudent (Student) :
internship = ’"mandatory, from March to June’

>>> james = MasterStudent (’ james’)
>>> james.internship

"mandatory, from March to June’
>>> james.set_age (23)

>>> james.age

23

The MasterStudent class inherited from the Student attributes and methods.

Thanks to classes and object-oriented programming, we can organize code with different classes corresponding to
different objects we encounter (an Experiment class, an Image class, a Flow class, etc.), with their own methods
and attributes. Then we can use inheritance to consider variations around a base class and re-use code. Ex : from
a Flow base class, we can create derived StokesFlow, TurbulentFlow, PotentialFlow, etc.

2.9. Object-oriented programming (OOP) 43

CHAPTER 3

NumPy: creating and manipulating humerical data

authors Emmanuelle Gouillart, Didrik Pinte, Gaél Varoquaux, and Pauli Virtanen

This chapter gives an overview of Numpy, the core tool for performant numerical computing with Python.

3.1 The Numpy array object

Section contents

* What are Numpy and Numpy arrays? (page 44)
* Creating arrays (page 45)

* Basic data types (page 47)

* Basic visualization (page 48)

* Indexing and slicing (page 50)

* Copies and views (page 53)

* Fancy indexing (page 54)

3.1.1 What are Numpy and Numpy arrays?

Numpy arrays

Python objects

* high-level number objects: integers, floating point

* containers: lists (costless insertion and append), dictionaries (fast lookup)
Numpy provides

* extension package to Python for multi-dimensional arrays

* closer to hardware (efficiency)

* designed for scientific computation (convenience)

* Also known as array oriented computing

>>> import numpy as np

>>> a = np.array ([0, 1, 2, 31)
>>> a

array ([0, 1, 2, 31)

Tip: For example, An array containing:

44

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

* values of an experiment/simulation at discrete time steps
* signal recorded by a measurement device, e.g. sound wave

* pixels of an image, grey-level or colour

3-D data measured at different X-Y-Z positions, e.g. MRI scan

Why it is useful: Memory-efficient container that provides fast numerical operations.

In [1]: L = range(1000)

In [2]: %timeit [i**x2 for i in L]
1000 loops, best of 3: 403 us per loop

In [3]: a = np.arange (1000)

In [4]: %timeit a=*=*2
100000 loops, best of 3: 12.7 us per loop

Numpy Reference documentation

* On the web: http://docs.scipy.org/

* Interactive help:

In [5]: np.arrayi

String Form:<built-in function array>

Docstring:

array (object, dtype=None, copy=True, order=None, subok=False, ndmin=0,

* Looking for something:

>>> np.lookfor (' create array’)
Search results for 'create array’
numpy.array
Create an array.
numpy . memmap
Create a memory-map to an array stored in a xbinaryx file on disk.

In [6]: np.con*i
np.concatenate
np.conj
np.conjugate
np.convolve

Import conventions

The recommended convention to import numpy is:

‘>>> import numpy as np

3.1.2 Creating arrays

Manual construction of arrays

e 1-D:

3.1. The Numpy array object 45

http://docs.scipy.org/

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> a

= np.array ([0, 1, 2, 3])
>>> a
array ([0, 1, 2, 31)

>>> a.ndim

1
>>> a.shape
(4,)
>>> len (a)
4
2-D, 3-D, ...:
>>> b np.array ([[0, 1, 2], [3, 4, 511) # 2 x 3 array
>>> b
array([[0, 1, 2],

[3, 4, 511)
>>> b.ndim
2
>>> Db.shape
(2, 3)
>>> len (b) # returns the size of the first dimension
2
>>> c np.array ([[[1], [2]1]1, [[31, [4111)
>>> ¢
array ([[[1],

(211,
[[31,
[(4111)

>>> c.shape
(2, 2, 1)

Exercise: Simple arrays

* Create a simple two dimensional array. First, redo the examples from above. And then create your
own: how about odd numbers counting backwards on the first row, and even numbers on the second?

* Use the functions 1en (), numpy . shape () on these arrays. How do they relate to each other? And
to the ndim attribute of the arrays?

Functions for creating arrays

Tip:

In practice, we rarely enter items one by one...

Evenly spaced:

>>> a = np.arange(10) # 0 .. n-1 ()

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)

>>> b = np.arange(l, 9, 2) # start, end (exclusive), step
>>> Db

array ([1, 3, 5, 71)

or by number of points:

>>> ¢ = np.linspace(0, 1, 6) # start, end, num-points
>>> c

array([0. , 0.2, 0.4, 0.6, 0.8, 1. 1)

>>> d = np.linspace(0, 1, 5, endpoint=False)

3.1.

The Numpy array object 46

http://docs.python.org/2.7/library/functions.html#len

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

>>> d
array([0. , 0.2, 0.4, 0.6, 0.8])

e Common arrays:

>>> a = np.ones ((3, 3)) # reminder: (3, 3) 1is a tuple

>>> a
array ([[1., 1., 1.7,
[1., 1., 1.1,
r 1., 1., 1.11)
>>> b = np.zeros((2, 2))
>>> b
array ([[0., 0.1,
[0., 0.11)
>>> c = np.eye(3)
>>> ¢
array([[1., 0., 0.1,
[0., 1., 0.1,
[0., 0., 1.11)
>>> d = np.diag(np.array([1l, 2, 3, 41))
>>> d
array([([1, O, O, O],
[o, 2, 0, 01,
[o, o, 3, 01,
[0, 0, O, 4]1)

14

¢ np.random: random numbers (Mersenne Twister PRNG):

>>> a = np.random.rand(4) # uniform in [0, 1]

>>> 3
array ([0.95799151, 0.14222247, 0.08777354, 0.51887998]

>>> b = np.random.randn (4) # Gaussian
>>> b

array ([0.37544699, -0.11425369, -0.47616538, 1.79664113]

>>> np.random.seed (1234) # Setting the random seed

Exercise: Creating arrays using functions

* Experiment with arange, linspace, ones, zeros, eye and diag.

* Create different kinds of arrays with random numbers.

* Try setting the seed before creating an array with random values.

* Look at the function np . empty. What does it do? When might this be useful?

3.1.3 Basic data types

You may have noticed that, in some instances, array elements are displayed with a trailing dot (e.g. 2. vs 2). This
is due to a difference in the data-type used:

>>> a = np.array([1l, 2, 31)
>>> a.dtype
dtype (" int64’)

>>> b = np.array([1l., 2., 3.1)
>>> b.dtype
dtype (' float64’)

Tip: Different data-types allow us to store data more compactly in memory, but most of the time we simply work
with floating point numbers. Note that, in the example above, NumPy auto-detects the data-type from the input.

3.1. The Numpy array object 47

Python Scientific lecture notes, Release 2013.2 beta (euroscipy 2013)

You can explicitly specify which data-type you want:

>>> ¢ = np.array([1l, 2, 3], dtype=float)
>>> c.dtype
dtype (' float64’)

The default data type is floating point:

>>> a = np.ones((3, 3))
>>> a.dtype
dtype (' float64d’)

There are also other types:

Complex

>>> d = np.array ([1+2], 3+43j, 5+6%x173])
>>> d.dtype
dtype (' complex128’)

Bool

>>> e = np.array([True, False, False, True])
>>> e.dtype
dtype (’bool’)

Strings

>>> f = np.array([’Bonjour’, ’"Hello’, ’"Hallo’,])
>>> f.dtype # <-—— strings containing max. 7 letters
dtype (" S7")

Much more
* int32
e int64
* unit32

* unito64

3.1.4 Basic visualization

Now that we have our first data arrays, we are going to visualize them.

Start by launching IPython in pylab mode