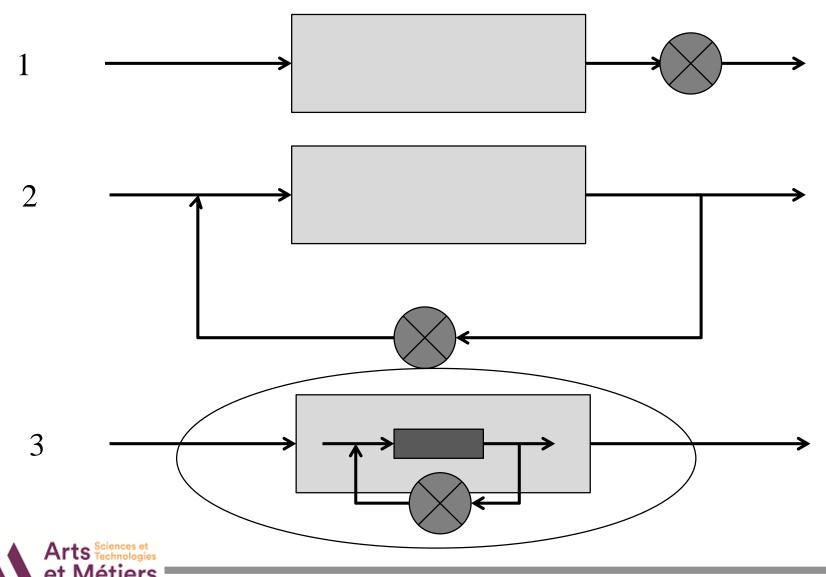
INTRODUCTION A LA MAITRISE STATISTIQUE DES PROCEDES ET A LA METHODE 6 SIGMA

de la maîtrise de la production par la mesure

Pascal LE ROUX
Professeur agrégé
ENSAM Bordeaux-Talence

V2 juin 2019

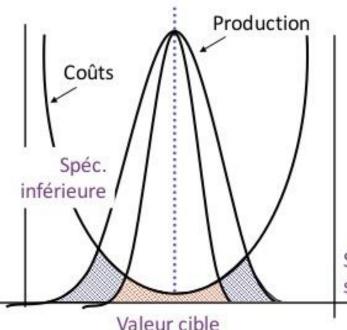

L'entreprise doit démontrer son aptitude à fournir constamment un produit conforme aux exigences des clients et aux exigences réglementaires applicables...

...L'entreprise vise à accroître la satisfaction de ses clients

extrait du chapitre 1.1 Généralités de l'ISO 9001-2015

Le contrôle au cœur des systèmes

Risques économiques et variabilités des

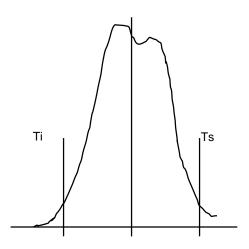

systèmes

Les impacts de la variation

L'analyse de la variabilité

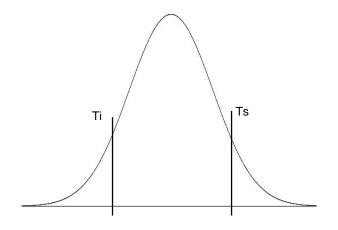
Genichi Taguchi (1924-2012)

Spéc. supérieure



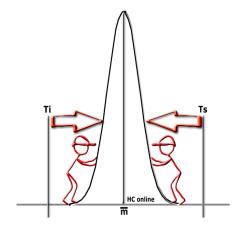
Plus la variation augmente, plus le coût augmente!

DXL Groupes 2016 - www.xl-groupe.com


Variabilité d'une production : objectif

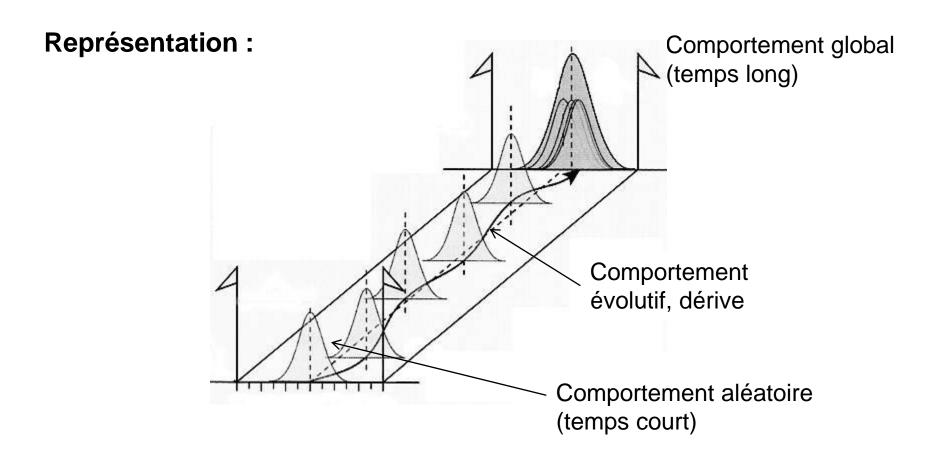
Production non maitrisée

Causes : dérives


+ aléatoires

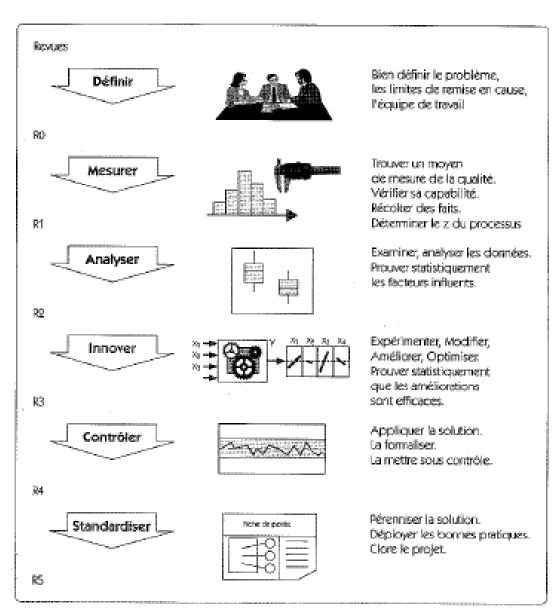
Production maitrisée

Causes : Dérives corrigées + aléatoires quantifiés



Production capable

Causes : aléatoires limitées pour un risque accepté


Comportement aléatoire et évolutif (dérive)

Compléments apportés par la méthode 6

sigma et DMAICS

identifier

mesurer

modéliser

améliorer

Les causes de variations

Aléatoires:

Elles existent dans chaque opération;

Elles font partie du processus lui-même (c'est la dispersion naturelle du procédé).

Il est possible de les réduire, jamais de les annuler.

Evolutives:

Elles sont présentes dans la plupart des opérations / processus et génèrent une évolution de façon continue; dérive.

Il est généralement possible de corriger leurs influences

Accidentelles:

Elles sont présentes dans la plupart des opérations / processus à un moment ou à un autre;

Elles sont le résultat d'une perturbation unique.

Il est généralement possible de les détecter et agir pour y remédier.

Maitriser la mesure : capabilité de mesure

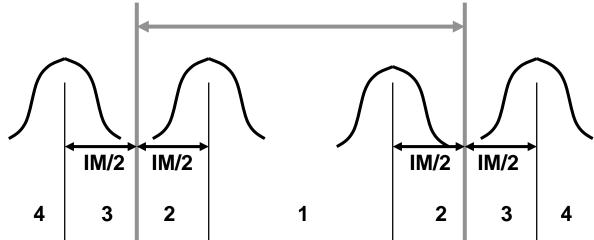
ZONES:

1: Grandeur conforme : zone de garantie de conformité

2: Grandeur déclarée conforme

risque client : accepter une grandeur non conforme

3: Grandeur déclarée non conforme


risque fournisseur : refuser une grandeur conforme

4: Grandeur non conforme : zone de garantie de non-conformité

Zone d'indétermination

 $T = \pm T/2$: Tolérance

I

 $IM = \pm IM/2 : Incertitude$

de mesure

zones:

$$T/IM > 2 (k = 2)$$

La Capabilité C est définie par : C = T / U

si IM/2 = k uc, il en découle :

Maitriser la mesure : R&R

Incertitudes de mesure :

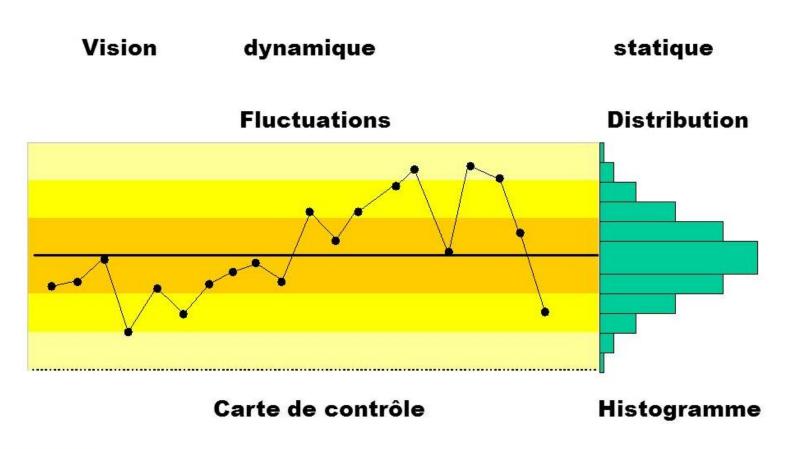
Elles dépendent de facteurs type étalonnage et raccordement et de facteurs type répétabilité et reproductibilité

Etalonnage et raccordement :

Si l'influence de ces facteurs est négligeable par rapport aux répétabilité et reproductibilité, il est possible de réduire la maitrise de la mesure à la maitrise du R&R

répétabilité et reproductibilité : R&R

Permet de quantifier l'ensemble des instabilités de mesure sur poste de production : opérateur, outillage, température, etc


Règle minimale : détermination de l'écart type

$$u_{(R\&R)} = \sqrt{u \ r\'ep\'etabilit\'e^2 + u \ reproductibilit\'e^2}$$

Les 2 aspects du suivi de production

Les deux aspects de la production

Taille d'un échantillon

Cas de l'échantillon indépendant ou non exhaustif (N infini)

La formule donnant la taille de l'échantillon minimum est la suivante :

 $n = t^2 \cdot p \cdot (1-p) / e^2$

N: la taille de la population-mère,

n : la taille de l'échantillon,

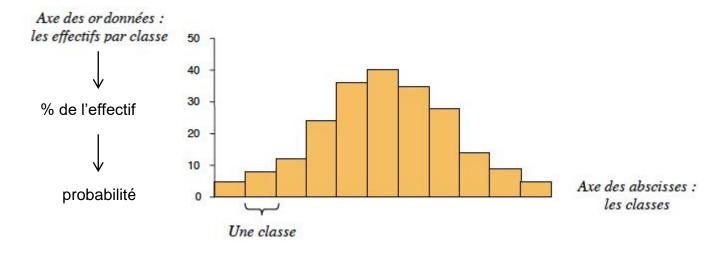
e: la marge d'erreur,

t : le coefficient de marge déduit du taux de confiance,

p : la proportion des éléments de la population-mère

qui présentent une propriété donnée.

Les taux de confiance les plus utilisés et les coefficients de marge associés sont donnés dans le tableau suivant :


Taux de confiance	Coefficient de marge (t)
90 %	1,65
95 %	1,96
99 %	2,57

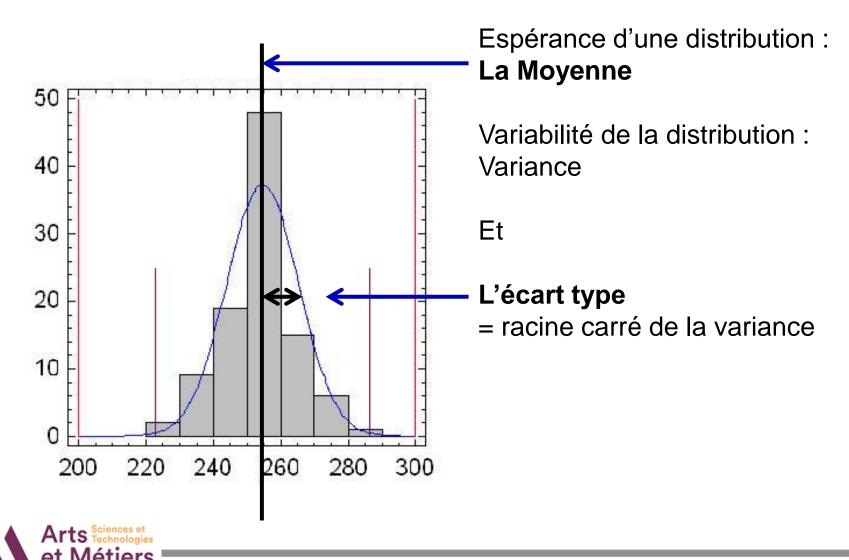
La norme NFX06 022/ ISO2859 recommande :

Quantité lot		Quantité à contrôler minimum
1 à 8	\rightarrow	2
9 à 15	→	3
16 à 25	\rightarrow	5
26 à 50	\rightarrow	8
51 à 90	\rightarrow	13
91 à 150	\rightarrow	20
151 à 280	\rightarrow	32
281 à 500	\rightarrow	50

Histogramme

Si on ne définit pas de classe l'échelon de mesure devient la classe. Dans la plupart des cas ce n'est pas exploitable.

Choix de la largeur de la classe h thèorique :


h théorique =
$$\frac{X \max_{i} - X \min_{i}}{k}$$

N nbre de mesures	25	50	100	250
K nbre de classes	6	7	8	9

Attention: H >> U (incertitude élargie) ou u(R&R)

Modélisation de la distribution

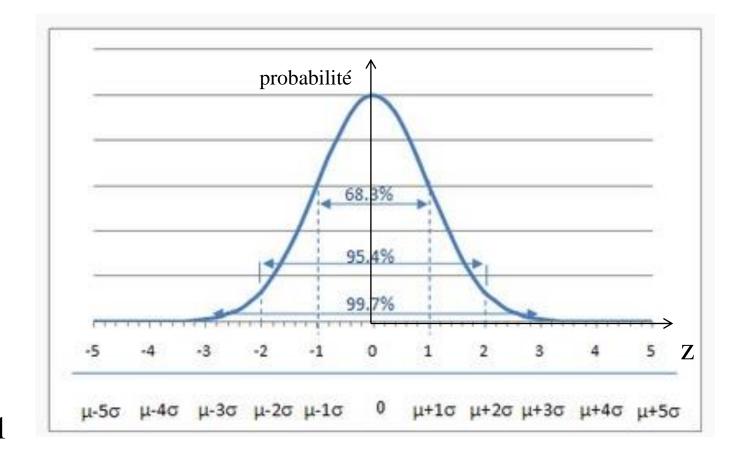
Loi normale centrée réduite

changement de variable :

$$Z = \frac{x - \bar{x}}{\sigma}$$

Propriétés:

$$P(x)=F(u)$$


$$P(-x)=1-F(u)$$

Si
$$P(x1)=F(u1)$$
 et

$$P(x2)=F(u2)$$
, et X1

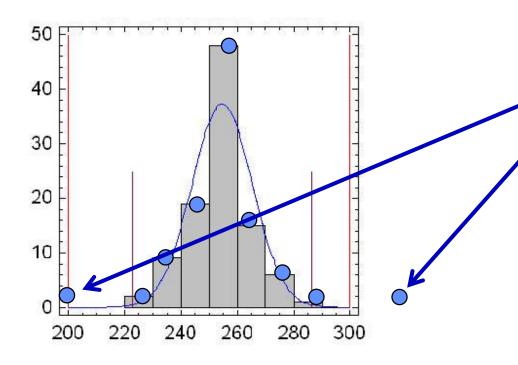
$$(X2) = P(X2) - P(X1)$$

X2) = P(X2) - P(X1) Caractérisation de la distribution de Gauss : moyenne μ et écart type σ

Table de la distribution Z Normale Réduite

Fonction de répartition : P(Z < z)

Extrait:

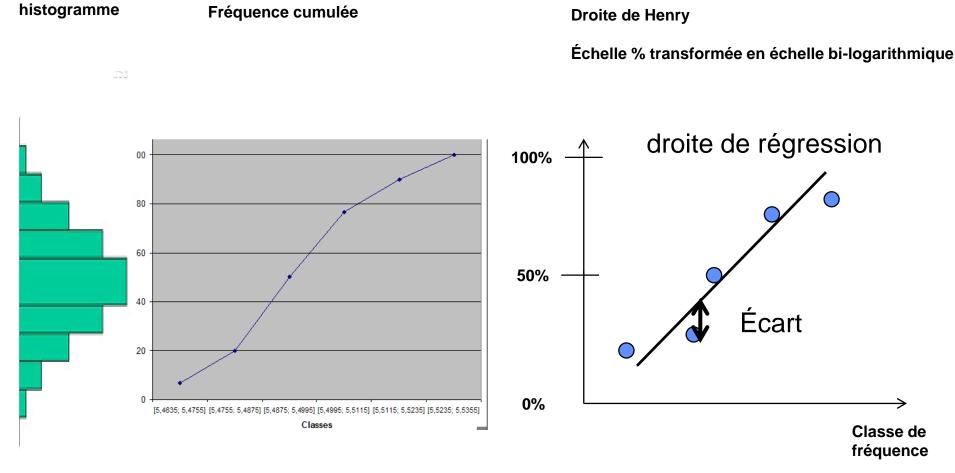

Les valeurs les plus courantes de cette table détaillée sont reprises en dernière ligne de la table de t de Student Exemple : P(Z<0.35)= 0,63683 se trouve en ligne 0.3 et colonne 0.05

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,1	0,53983	0,54380	0,54776	0,55172	0,55567	0,55962	0,56356	0,56750	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59484	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,65910	0,66276	0,66640	0,67003	0,67365	0,67724	0,68082	0,68439	0,68793
0,5	0,69146	0,69498	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72241
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,7	0,75804	0,76115	0,76424	0,76731	0,77035	0,77337	0,77637	0,77935	0,78231	0,78524
0,8	0,78815	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82382	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
			0.04634			0.05014		0.05760		
1,0	0,84135	0,84375	0,84614	0,84850	0,85083	0,85314	-	0,85769	0,85993	0,86214
1,1	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90148
1,3	0,90320	0,90490	0,90658	0,90824	0,90988 0,92507	0,91149	0,91309	0,91466	0,91621 0,93056	0,91774 0,93189
1,4	0,91924	0,92073	0,92220	0,92364	0,92307	0,92647	0,92786	0,92922	0,93036	0,93189
1,5	0.93319	0.93448	0,93575	0,93699	0.93822	0.93943	0,94062	0,94179	0.94295	0.94408
1,6	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0.95544	0,95637	0,95728	0,95819	0,95907	0.95994	0,96080	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97670
2,0	0,97725	0,97778	0,97831	0,97882	0,97933	0,97982		0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574
2,2	0,98610	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,98840	0,98870	0,98899
2,3	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0.99379	0,99396	0.99413	0,99430	0,99446	0,99461	0,99477	0,99492	0.99506	0,99520
2,5	0,99579	0,99547	0,99413	0,99430	0,99585	0,99461	0,99477	0,99492	0,99306	0,99520
2,0	0,99653	0,99664	0,99674	0,99683	0,99693	0.99702	0,99711	0,99720	0,99728	0,99736
2,7	0.99744	0.99752	0,99760	0,99767	0,99693	0.99781	0.99788	0,99720	0.99801	0.99807
	0,99744	0,99732	0,99760	0,99767	0,99774	0,99781	0,99788	0,99793	0,99856	0,99861
2,9	0,77013	0,77017	0,33023	0,55051	0,99030	0,99041	0,77040	0,55631	0,55050	0,77001
3,0	0,99865	0,99869	0,99874	0,99878	0,99882	0,99886	0,99889	0,99893	0,99897	0,99900
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976

Test de normalité : Dixon

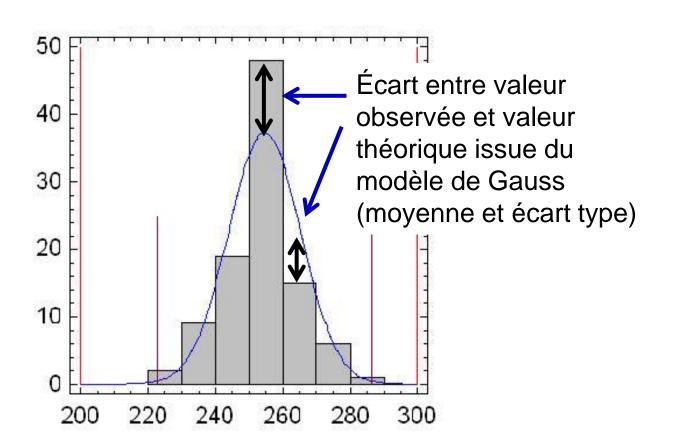
Un échantillon de mesure est il représentatif de la production complète ?

Les tests de normalité existe pour répondre à cette question à un risque près.



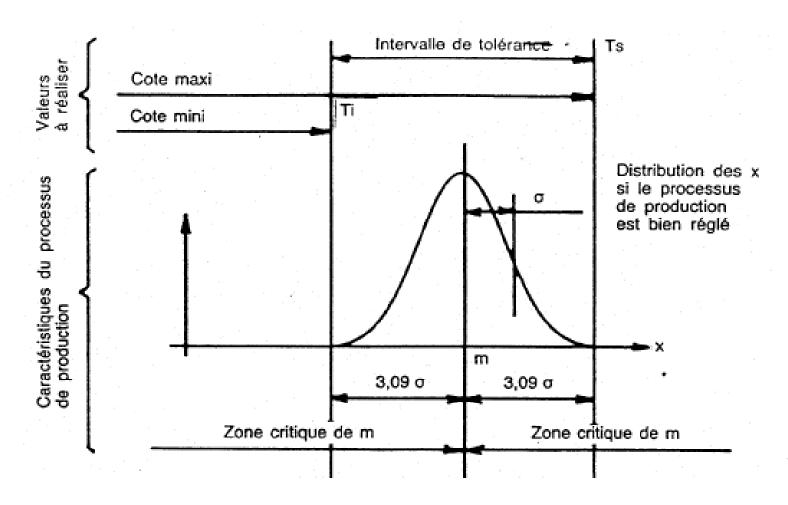
Test de Dixon:

éliminer les valeurs trop extrèmes obtenues sur un échantillon qui fausseraient le calcul de la moyenne et de l'écart type expérimentaux.


Test de normalité : droite de Henry

Les écarts doivent être inférieure à une valeur limite

Test de normalité : KHI deux


Test:

1- calculer la somme des écarts au carré divisé par la valeur théorique

2 comparer cette valeur à la valeur limite du KHI2 obtenue par tableur ou tableau pour un risque admissible donnée

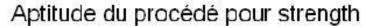
Capabilité

Capabilité

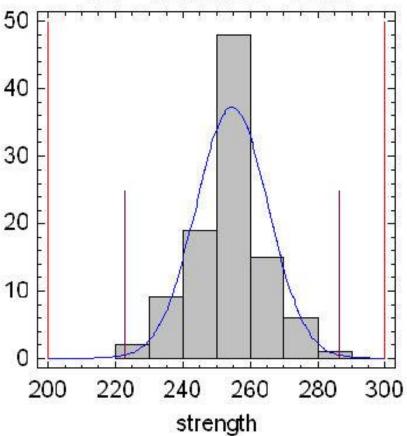
L'indice de capabilité machine est de :

$$Cm = \frac{IT}{6\sigma}$$

IT Intervalle de tolérance σ Ecart type estimé.


La machine sera dite capable si Cm≥1,33.

L'indice Cmk mesure à la fois si la machine est capable mais aussi si celle-ci est bien réglée.


$$Cmk = \min\left[\frac{\overline{\overline{X}} - Ti}{3\sigma}; \frac{Ts - \overline{\overline{X}}}{3\sigma}\right]$$

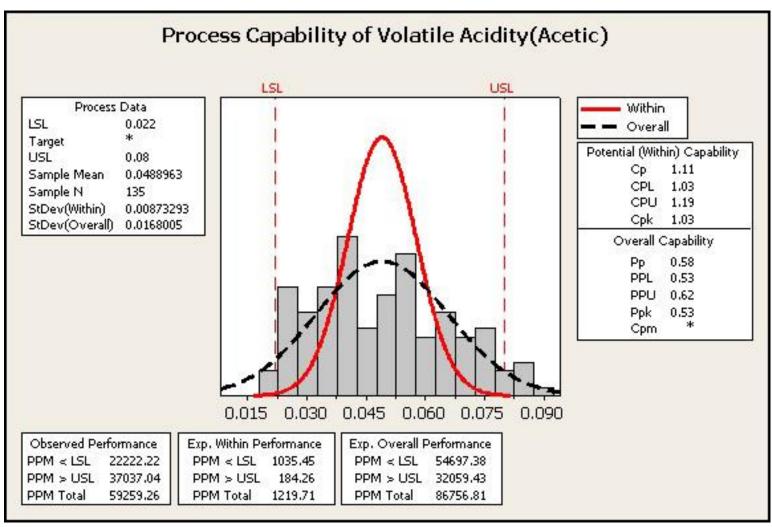
Si Cmk≥1,33 alors la machine est bien centrée.

Exemple de capabilité

LSI = 200,0; LSS = 300,0

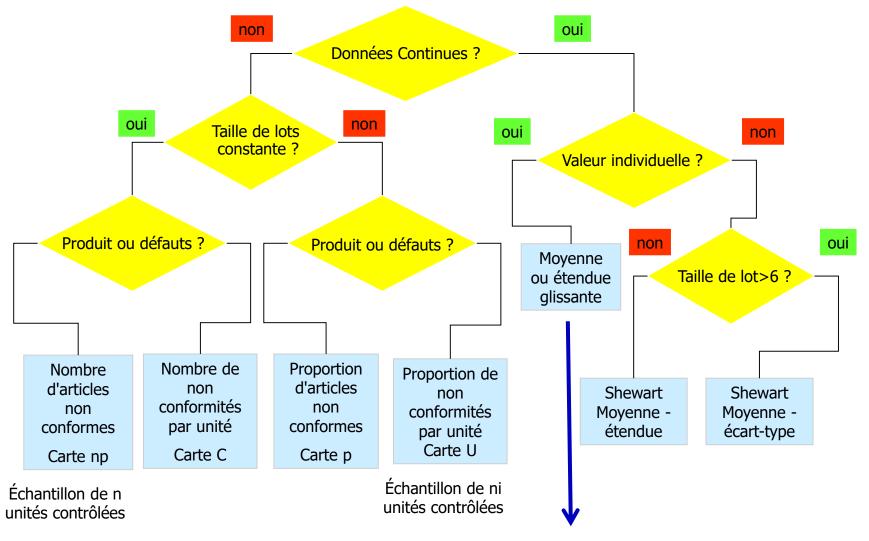
Normale

Moyenne=254,64


Ecart-type=10,68

$$Cp = 1,560$$

$$Cpk = 1,415$$



Exemple de capabilité

Choisir le bon type de carte de contrôle

Cas traité dans le document

Les composants d'une carte de contrôle

Exemple de la carte « à la moyenne » Limite supérieure de contrôle Carte X barre/R pour X1 Moyenne 26.5 3.02L=26.45 Moyenne d'échant. 25.5 =25.01 24.5 -3.0SL=23.56 23.5 Sous-groupe 10 Limite inférieure de contrôle

Les composants d'une carte de contrôle

Interprétation d'une carte de contrôle

Zone de « vigilance »

Zone de « sécurité »

Alerte

LCS

LSS (facultatif)

Moyenne

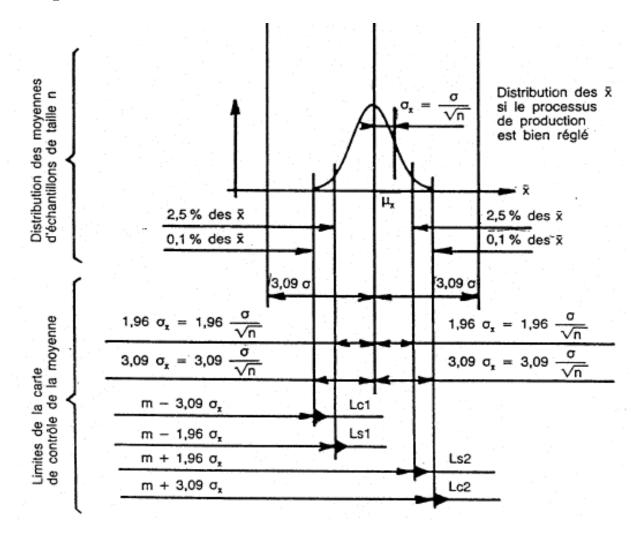
LSI (facultatif)

LCI

(+3 σ)	Zone A
(+2 σ)	Zone B
(+1 σ)	Zone C
(-1 σ)	Zone C
(-2 σ)	Zone B
(-3 σ)	Zone A

LCI, LCS : limites de contrôle supérieure et inférieure

LSI, LSS: limites de surveillance supérieure et inférieure


Alerte

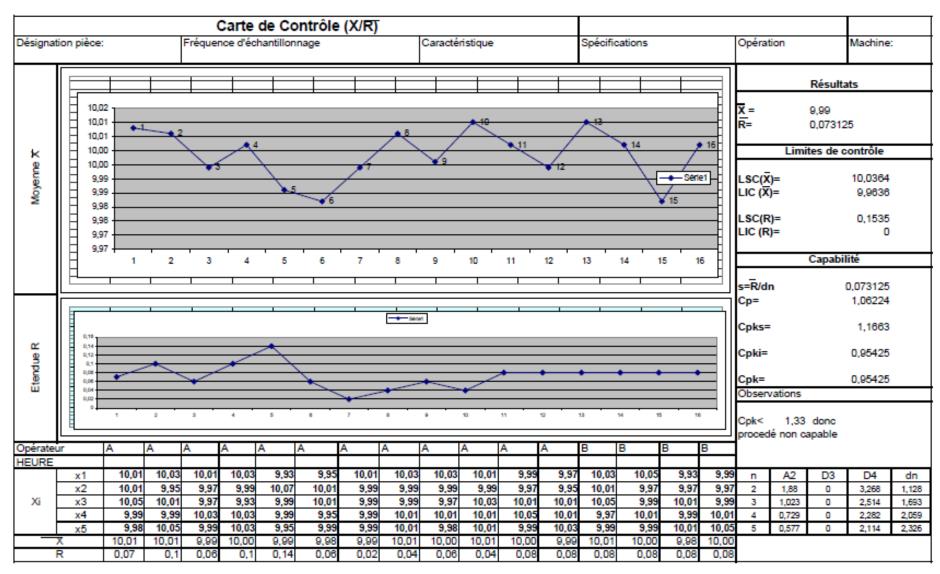
Les limites à 1,2 ou 3 sigma constituent des alarmes de sensibilité variable.

Les règles d'alarme complètent l'exploitation de la carte de contrôle.

Limites pour carte de contrôle

Limites pour carte de contrôle

On peut l'estimer à partir de la moyenne des étendues ou de la moyenne des écarts-types des échantillons.


$$\sigma = \frac{\overline{W}}{d2}$$
 ou $\sigma = \frac{\overline{s}}{c4}$, \overline{W} étant la moyenne des étendues et \overline{s} étant la moyenne des écarts-types.

c4 et d2 sont des coefficients qui permettent l'estimation et varient en fonction de n. Ils sont donnés par les statistiques.

n	2	3	4	5	6	7	8	9	10	11	12
d2	1.128	1.693	2.059	2.326	2.534	2.704	2.847	2.970	3.078	3.173	3.258
c4	0.7919	0.8862	0.9213	0.940	0.9515	0.9594	0.9650	0.9693	0.9727	0.9754	0.9776

Exemple de carte de contrôle moyenne/étendue

Interprétation de la carte de contrôle

RES	ULTAT DU CONTROLE	CONSTAT	INTERPRETATION	CORRECTION
1 LCS X LCI	^	Pas de grande variation de la moyenne.	Processus réglé et stable.	Pas de correction à envisager.
2 LCS- X -		La dernière moyenne est trop grande et sort des limites de contrôle.	Le processus dérive, il faut en trouver la cause commune pour le corriger durablement.	Intervenir et régler le processus. Voir le journal de bord pour trouver la cause et corriger.
3 LCS X		On constate une série de sept points consécutifs du même coté de la moyenne.	Le processus dérive, ce qui peut être du à un mauvais réglage initial.	Intervenir et régler le processus. Voir le journal de bord pour trouver la cause et corriger.
X LCI		Série de sept points consécutifs en dérive constante.	Processus en dérive constante, risque de production mauvaise.	Régler le processus. Chercher la cause, sans doute spéciale (usure d'outil par exemple).
5 LCS X		Les 2/3 des points sont en dehors d'une zone centrée autour de la moyenne.	Forte probabilité de dérive due à une cause aléatoire.	Renforcer la surveillance. Modifier les conditions de production pour trouver la cause aléatoire.

Conseils pour une bonne maitrise de la production

Une étude de capabilité doit s'effectuer sur un procédé STABILISE. Les règles de base sont les suivantes :

- la machine est en bon état de fonctionnement,
- la gamme de fabrication est figée,
- le matériau doit être homogène et conforme à la définition,
- la cadence de la production doit être la cadence série,
- les outils employés seront ceux retenus pour la fabrication,
- le fonctionnement de la machine doit être stabilisé,
- Les moyens de mesure doivent être maitrisés.

Une étude de capabilité ne peut pas prévoir :

- les erreurs humaines
 - utiliser les outils : AMDEC , Poka Yoké, ...
- les autres causes spéciales
 - utiliser : Expertise technique , Plan d'expérience, ...

Bibliographie

Appliquer la maitrise statistique des procédés MSP/SPC : Pillet 2003 éditions d'organisation

6 sigma comment l'appliquer : Pillet 2004 éditions d'organisation

Normes (extrait):

NF X 06-018 1994 (et suivantes) : guide pour la sélection d'un système d'un programme ou d'un plan d'échantillonnage, pour acceptation pour le contrôle d'unités discrètes en lots

NF X 06-023 1997 : Sélection de plans d'échantillonnage

NF X 06 031 1995 (et suivantes) : application de la statistique aux cartes de contrôle

NF X 06-075-1 2013 (et suivantes) : Méthodes statistiques dans la gestion de processus

NF X 06-013-1 2014 (et suivantes) :Règles d'échantillonnage pour les contrôles par mesures

Exercices et applications

Réaliser une étude AMDEC process

AMDEC de base

Paretto

Comportement des sources retenues

Maitriser la mesure

Déterminer le facteur R&R

Construire un histogramme

Dimensionner les classes

généraliser

Traiter les hypothèses de distribution

Test de Dixon

Droite de Henry

KHIdeux

Exploiter la loi normale centrée réduite

Calcul de % de risque de non-conformité à partir de la table

Exploiter le rapport entre risques de non-conformité et capabilité

Relation entre capabilité et risque de non conformité

Dimensionner un échantillonnage

Construire une carte de contrôle

Utilisation d'un tableur ou d'un logiciel

Cas particuliers

Loi unilimite : défaut de forme

Petites séries

