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A few activities 
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Test 1 

Test 2 

a) G. Vermot des Roches, b) G. Martin, c) J.P. Bianchi 
d) F. Conejos, e) R. Penas, f) H. Pinault 



• Necessity: programmatic access to all steps 

• Chosen solution: flexible toolbox & custom applications 
– Experimental Modal Analysis 

– Test / Analysis correlation 

– 3D Finite Element Modeling 

 

• With a modular approach 
– MATLAB environment 

– OpenFEM : Core software for Finite Element  

Modeling (co-developed with INRIA) 

– FEMlink : import / export industrial modules  

– Runtime SDT : customized and standalone compiled applications 

Why does SDTools exist ? 
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CAD/Meshing 

FEM 

Simulation 

Testing 

CATIA, Workbench, …  

NASTRAN, ABAQUS, ANSYS,... 

Adams, Simpack, Simulink,... 

Siemens TestLab, ME-Scope, … 

Simulation 

Validation 



What is a system ? 

In Out 

Environment 
Design point 

System 
States 
 

Simple example : modified Oberst test for 3D weaved composite test 

• Inputs 𝒖 𝒕  : hammer with force measurement 

• Outputs 𝒚 𝒕  

• Test : vibrometer on testbed 

• Computation : stresses 
• State 𝒙 𝒕  

• Displacement & velocity field as function of time 

 𝑥 (𝑡) = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑝, 𝑡  evolution 

 𝑦(𝑡) = 𝑔 𝑥 𝑡 , 𝑢 𝑡 , 𝑝, 𝑡   observation 

• Environment variables 𝒑 

• Dimensions, test piece (design point) 

• Temperature (value of constitutive law or state of thermo-

viscoelastic) 

 

• Feature : function of output (example modal frequency) 

4 
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What is a model 
• A function relating input and outputs 

• For one or many parametric configurations 

 

Model categories 
• Behavior models (meta-models) 

• Test, constitutive laws, Neural networks 

• Difficulties : choice of parametrization, domain of validity 

• Knowledge models 

• Physical principles, low level meta-models 

 

Why do we need system models ? 
Design 

• Become predictive : understand, know limitations 

• Perform sizing, optimize, deal with robustness 

Certify 

• Optimize tests : number, conditions 

• Understand relation between real conditions and certification 

• Account for variability 

Maintain during life 

• Design full life cycle (plan  maintenance) 

• Use data for conditional maintenance (SHM) 
0
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System models : nature & objectives 

In 
Out 

Environment 
Design point 

System 
States 
 



• Nominal model (elastic + viscous damping) 

𝑀 𝑞 + 𝐶 𝑞 + 𝐾(𝑞) 𝑞 = 𝑏(𝑞) 𝑢(𝑡)  
 𝑞  DOF, M mass, K stiffness 
 

• Loads decomposed as spatially unit loads and inputs  
   {F(t)} = [b] {u(t)} 
 
• {y} outputs are linearly related to DOFs {q} using an 

observation equation 
  {y(t)} = [c] {q(t)} 
• Simple case : extraction {w2}=[0 0 1 0]{q} 

 
 
 

• More general : intermediate points, reactions, strains, 
stresses, … 
 

 

Equations of motion 

6 



Equations of motion 
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Finite elements 

Continuous  discrete full 

Reduction 

Full  reduced 

Support Element: line, tria, tetra, … FE mesh 

Variable separ. 

Shape functions 

𝑤 𝑥, 𝑡 = 𝑁𝑖 𝑥 𝑞𝑖(𝑡) 
𝜖 𝑥, 𝑡 = 𝐵𝑖 𝑥 𝑞𝑖(𝑡) 

𝑞(𝑡) = 𝑇𝑖 𝑞𝑖 𝑡  

𝑇𝑖 simple FE solutions 

Matrix comp. 

Weak form 
𝐾𝑖𝑗 =  𝐵𝑖

𝑇Λ𝐵𝑗Ω
=  𝐵𝑖

𝑇 𝑔 Λ𝐵𝑗𝑤𝑔𝐽𝑔𝑔   

numerical integration 

𝐾𝑖𝑗𝑅 = 𝑇𝑖
𝑇𝐾𝑇𝑗 

FEM matrix projection  

Assembly Localization matrix Boundary continuity, CMS 

Validity Fine mesh for solution gradients Good basis for considered 
loading 

FEM  Reduction 

[1] O. C. Zienkiewicz et R. L. Taylor, The Finite Element Method. MacGraw-Hill, 1989 
[2] J. L. Batoz et G. Dhatt, Modélisation des Structures par Éléments Finis. Hermès, Paris, 1990 
[3] K. J. Bathe, Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ, 1982 



Ritz/Galerkin reduction from full 
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• Basis building steps 
– FEM : cinematically admissible subspace, virtual work principle 

– Reduction : 1) learn, 2) generate basis 3) choose DOF 

𝑞 𝑝, 𝑡 𝑁 ≈ 𝑇 𝑁×𝑁𝑅 𝑞𝑅(𝑝, 𝑡) 𝑁𝑅 

 

• Virtual work principle / reduction / Ritz-Galerkin 
Matrices 𝑀𝑅(𝑝) = 𝑇𝑇𝑀(𝑝)𝑇, 𝐾𝑅(𝑝) = 𝑇𝑇𝐾(𝑝)𝑇 

Loads f(𝑝, 𝑡) = 𝑏𝑅(𝑝) 𝑢(𝑡) = 𝑇𝑇𝑏 {𝑢} 

Observations y(𝑝, 𝑡) = 𝑐𝑅(𝑝) 𝑞𝑅(𝑝, 𝑡) = 𝑐𝑇 {𝑞𝑅} 

 

• Solve time/freq (same model form) 
𝑀𝑅 𝑞𝑅 + 𝐶𝑅 𝑞𝑅 + 𝐾𝑅 𝑞𝑅 = 𝑏 𝑢(𝑡)

{𝑦(𝑡, 𝑝)} = 𝑐𝑅 {𝑞𝑅}
 

 

 



Outline : solvers for dynamics 

Continuous/discrete/reduced models (a brief reminder) 

Full order model solvers 

• Direct frequency resolution 

• Direct time integration (implicit/explicit, first/second order, 
Newmark, …  Gaël Chevallier) 

 

Reduced order model + time/frequency resolution 

• Basic reduction : modal superposition, static correction, Guyan, 
Craig-Bampton, … 

• Modern vision of reduction: learning phase, basis building, DOF 
choice 

• Substructuring 

• Parametric model reduction, error control 

 

When does reduction become useful ?  

Basic building blocks ? 9 



MATLAB Tutorial : direct frequency response issues 

• Step1 : assembly, sparse matrices 

• Step 2 : point load, collocated displacement, factorization 
strategies 

• Step 3 : subspace around resonance, phase collinearity, SVD 

• Step 4 : Rayleigh-Ritz, reduced FRF 
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Direct frequency response : Zq=F (step2) 

1. Renumbering (fill in reduction, symbolic factorization, 
METIS, symrcm, …) 

2. Numerical factorization  𝑍 = 𝐿𝑈 or 𝑍 = 𝐿𝐷𝐿𝑇 

3. Forward/backward solve 𝐿 𝐷 𝐿𝑇𝑞 = 𝐹 

 

 

 

 

 

 

 

Sparse librairies : Umfpack (lu),  MA57 (ldl), Pardiso, Mumps, 
BCS-Lib, Spooles, Taucs, …  

11 



Transfers : what subspace is needed ? 

12 

• Experimental modal analysis subspace : 
• Modes within bandwidth 
• Upper residual (residual flexibility, 

static correction, state-space D term) 
• Lower residual (rigid body inertia, …) 

 
Nearby modes = poor representation of static 

Ph.D. Corine Florens 2010 

In Out 
System 
States 
 

Quasi-static response @ 10Hz = 

• Modes : high energy, load independent  
(no blister shape) 

• Static response (influence of input=blister), 
important away from resonance 
 



• Nominal model (elastic + viscous damping) 

 

 

• Conservative eigenvalue problem 

 

 

• M>0 & K0          real 

• Partial solvers exist 

 

Normal modes of elastic structure 

13 



Normal modes of elastic structure 

 

 

• Orthogonality 

• Scaling conditions 

• Unit mass 

• Unit amplitude 

• Principal coordinates 

14 



Modal contributions & static correction 

15 



Reduction <-> Ritz analysis 

Response is approximated 

 

 

 

• within subspace containing modes and flexibility 

 

 

 

• or modes and residual flexibility 

 

 

 

 

 
16 

Tuto : Krylov, orthog, … 



Attachment modes 

For free structure : static load implies 
deformation in a uniformly accelerating frame 



Applied load : free modes + static correction = McNeal 
Applied displacement : dynamic & Static/Guyan condensation 
 
 
 
No interior load = dynamic condensation 
 
 
Inertia neglected = static/Guyan 
 
 

Unit imposed displacement 



Frequency limit -> Craig-Bampton 

Inertia neglected : error associated with 𝑀𝑐𝑐𝑞𝑐 
 
When 𝑍𝑐𝑐 𝑠  is singular 
   
Approximation cannot be valid 
 
Fixed interface modes 
 
 
 
Craig-Bampton = guyan/static +  fixed interface 

19 



Learning strategy variants : POD 

Traditional : modes + static correction 

 

 

Snap-shot Ritz basis 

3 out of 100 useful modes 
Relatively close static correction 

Easily captures wide range 



Learning strategy : wave/cyclic 

1. Learn using wave (Floquet)/cyclic solutions 
2. Build basis with left/right compatibility 
3. Assemble reduced model 
 
 

PhD Sternshuss 2008 
21 

PhD Elodie Arlaud, 2016 



Outline 

1. Learning phase 
1. modes & static responses (bandwidth, inputs) : McNeal, Guyan, Craig-

Bampton 

2. POD 

2. Basis generation DOF selection 
1. SVD (truncation) 

2. Gramm-Schmidt, conjugate-gradient (Lanczos) 

3. Piecewise learning (sparsity, superelements, Component mode synthesis) 

 

3. Model reduction/modal synthesis/Ritz-Galerkin/virtual work principle 
𝑞(𝑥, 𝑡) = 𝑇(𝑥) 𝑞𝑅 𝑡  ⇒ 𝑍𝑅 𝜔, 𝑝 = 𝑇𝑇 𝑍 𝜔, 𝑝 𝑇 

Optimize reduced model usage 

4. Beyond LTI (parametric, NL, time varying, …) 

T independent of p 

22 

{q}N= 
qR 

Nx NR 

T 

In Out 

Environment 
Design point 

System 
States 
 



Tuto steps 3-4 

• POD learning 

• Rayleigh-Ritz / reduced solve 
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SVD & variants 
A = U S VH 

 
 
 
 
 
 
SVD 
• {X} on sphere in input space  

transformed in {Y}=[A]{X} ellipsoid 
• Series of rank one contributions          shape                       DOF 

 
Mode 
• 𝜙  on unit strain energy sphere 

output is kinetic energy 

• Singular value 
1

𝜔𝑗
2 =

𝜙𝑗
𝑇𝑀𝜙𝑗

𝜙𝑗
𝑇𝐾𝜙𝑗

 = 1/Rayleigh quotient 

AIAA Journal, Balmes, 1996 



Optimize reduced model computation 

• Spectral decomposition 

𝑦 = 𝑐𝑅 𝑀𝑅  𝑠
2+ 𝐾𝑅

−1𝑏𝑅𝑢 = 
𝑐𝜙𝑗𝜙𝑗

𝑇𝑏𝑢

𝑠2 + 2𝜁𝑗𝜔𝑗𝑠 + 𝜔𝑗
2

𝑁𝑀

𝑗=1

 

– Cost is 𝑂 𝑁3 × 𝑁𝐹 or 𝑂 𝑁3 + 𝑂 (𝑁𝑀 ×𝑁𝑎 × 𝑁𝑠) × 𝑁𝐹  

– The second is obviously much lower for not very small 𝑁𝐹 

 

• Transition matrix (or matrix exponential) : time domain (free 
response), space domain (Wave Finite Element) 

𝑥𝑛+1 = 𝐴 𝑥𝑛 = Θ𝑅 𝜆𝑗
\

\
 Θ𝐿𝑇 𝑥𝑛 = Θ𝑅 𝜆𝑗

𝑛+1\
\
 Θ𝐿𝑇 𝑥0  

– The second is obviously much lower for not very small 𝑛 
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SVD, variants, related 
Random fields Karhunen-Loeve :  
• input-norm I for all DOFs 
• output norm spatial correlation  

𝐶 =  exp[− 𝑥1 − 𝑥2 + 𝑦1 − 𝑦2 ]  

 
PCA Principal Component Analysis 
POD based on snapshot-reduction :  
• input-norm I on snapshot vectors 
• output norm I 

 
Junction modes 
• input-norm I for modes  

or contact stiffness 
• output norm local stiffness  

 
Non-linear dimensionality reduction (manifold) 
• More complex relation between parameters 
 
 

[1] Chung, Gutiérrez, & all, “stochastic finite element models,” IJME, 2005. 

[2]  Kershen & al. “POD”, Nonlinear dynamics , 2005  

[3]  Balmes, Vermot, “Colloque assemblages 2015”,  

[4] Bendhia 1-epsilon compatibility EJCM 2010 

[5] Ph.D. Olivier Vo Van 2016 

Opening Rotation 



From shapes to bases 
Vector independence 

• SVD 

• Krylov/Lanczos (iterations & conditioning, step5) 

• Gram Schmidt 

• LU 
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O. Boiteau, « Modal Solvers and resolution of the generalized problem (GEP) », Code_Aster, Version 5.0, R5.01.01-C, p. 1-78, 2001. 



Multi-frontal solvers / AMLS 

• Graph partionning methods  
group DOFs in an elimination tree 
with separate branches 

• Block structure of reduction basis 

• Block diagonal stiffness 

• Very populated mass coupling 

 

• Multi-frontal eigensolvers 
introduce some form of interface 
modes to limit size of mass 
coupling 

K M 

28 

T 



• Craig-Bampton often sub-performant because of interfaces 

 

 

 

 

 

 
• Unit motion can be redefined : interface modes  

Fourier, analytic polynomials, local eigenvalue 
5000 -> 500 interface DOFs.  

• Disjoint internal DOF subsets   

 

 

      Separate requirements for learning shapes & basis building :  

bandwidth, inputs external & parameter 
truncation, sparsity 

 

T 

Interface reduction / model size / sparsity 

2e6 rest x 5000 Int = 74GB 

5000^2 = 200 MB 

KR 

29 



MATLAB Tutorial : reduction, full operators 

• Step 5 : Krylov  

• Step 6 : sparse reduced model  

 

 

 

• Step 7 : frequency limit CB 

• Step 8 : an experimental case of SVD 
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DOF / sensor selection 

Solutions depends on subspace NOT basis 

Choose DOF you like or that make sense 

 

Ex 1: beam shape functions 

• Subspace 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 

• Observation 𝑦 = 𝑤1, 𝜃1, 𝑤2, 𝜃2
𝑇 

• Condition of unit on observation gives shape functions 𝑁𝑖  

 

Ex 2: multibody dynamics : use master nodes  

needed 𝑐 𝑇  full rank 
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{𝑦} = 𝑐 𝑇 𝑞𝑅
⇓

{𝑦} = 𝑐 𝑇 
𝑦
𝑞𝑐

= [𝐼 0]
𝑦
𝑞𝑐

 

 



Physical & Modal DOF 
 
 

•Physical domain: 
 
 

•Modal domain: 
- mass orthogonality condition 𝜙𝑇𝑀𝜙 = 𝐼 

- stiffness orthogonality condition 𝜙𝑗
𝑇𝐾𝜙𝑗 = 𝜔𝑗

2 

- Modal equation 
 
 

• Modal amplitudes 𝛼 = 𝝓−𝟏 𝑞 = 𝝓𝑻𝑴 𝑞  
Associated concepts : force appropriation, modal filter 

• Modal energies     𝑒𝑗 =
1

2
𝛼 𝑗
2 +𝜔𝑗

2𝛼𝑗
2  

[1] J. P. Bianchi, E. Balmes, G. Vermot des Roches, et A. Bobillot, « Using modal damping for full model transient analysis. Application to pantograph/catenary 

vibration », in ISMA, Leuven, 2010. 



Modal participations in ODS 

• Extract shape = 
SVD around « resonance » 

• Obtain modal amplitudes of 
nominal modes 

• Apparent stiffness/damping 
consistent for various methods 

PhD. Thénint 2011  



Modal energy computations 

• Does the shape change in NL behavior 

Ep(t) Ek(t) 

34/37 

[1] G. Vermot Des Roches, « Frequency and time simulation of squeal instabilities. Application to the design of industrial 

automotive brakes », Ph.D. thesis, Ecole Centrale Paris, CIFRE SDTools, 2011. 

[2] G. Vermot Des Roches et E. Balmes, « Understanding friction induced damping in bolted assemblies through explicit 

transient simulation », in ISMA, 2014, p. ID360.  



Modal DOF 

• Multi-stage cyclic symmetry 
(SNECMA).  
– Which stage, which diameter, … 

– Mistuning (which blade) 

35 PhD Sternshuss 2008 
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Dealing with NL/parameters/damping 

Reduced model 

• Coupling : test/FEM, fluid/structure 
active control, … 

• Local non-linearities : machining, bearings,  
contact/friction, … 

• Optimization / uncertainty 
 

In Sensors 



Viscoelastic constitutive relations 

• Stress is a function of strain history  

• Complex modulus in Laplace domain 

 

 

 

 

 

 

 

 

• Dynamic stiffness  linear combination of fixed matrices 

𝑍 𝐸𝑖 , 𝑠 = 𝑀𝑠2 + 𝐾𝑒 + 𝐸𝑖(𝑠, 𝑇, 𝜎0)
𝐾𝑣𝑖 𝐸0
𝐸0𝑗

 

 

 

 

Tests : Kergourlay 2003 
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𝑍 𝐸𝑖(𝑠), 𝑠 𝑞 = 𝐹  Damped viscoelastic resp. rewritten as 

𝑍 𝐸0, 𝑠 𝑞 = 𝐹 − 𝐸𝑖 𝑠 − 𝐸0
𝐾𝑣𝑖 𝐸0
𝐸0

𝑗

𝑞  

Tangent linear system,   internal NL/parametric loads 
 
Basis contains 
•Modes to represent nominal resonances 
•Flexibility to viscoelastic loads associated with nominal modes 

T = [1:NM    Ko
-1 [Im(Z-Zo)] 1:NM ] 

 
 

Residue iteration : viscoelastic material 

Modes    static response to parametric load 

Principle of reduction 
(assumptions on 
excitation space & freq) 
unchanged 

38 



What does first order bring ? 
• Correct energy distribution 

• Accuracy on peaks (modal is over-damped up to 100%) 

First order shape :T = [Ko
-1 [Im(Z-Zo)] 4 ]orth 

39 



Parametric loads & reduction 

Space/time decomposition of load 𝑏𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑁×Ng 𝑝(𝑡)  

• Know nothing about 𝑝 𝑡 𝑁𝑔 too large 

 

•  𝑝(𝑡)  associated with initial modes = 𝑐𝑁𝑂𝑅 𝜙1:𝑁𝑀 𝑁×NM 
𝑞𝑟(𝑡)  

Static correction for pressure load of elastic normal modes 

𝑇 = [𝜙 𝑝0   𝐾−1 𝑏𝑐𝑐𝑁𝑂𝑅𝜙 𝑝0 𝑁×NM]⊥ 

• Multi-model learning 𝑇 = [𝜙 𝑝1  𝜙 𝑝2 𝑁×𝑁𝑀]⊥ 

 

 

 

• Error control (residue iteration) 
 

𝑅𝑑 = 𝐾0
−1 𝑀0𝑠

2 + 𝐾0 𝑇𝑞𝑅 − 𝑏𝑒𝑥𝑡 𝑢𝑒𝑥𝑡 + 𝑓𝑝(𝑇𝑞𝑅 , 𝑝)  

 

 

 
40 

PhD A. Bobillot 2002 



• Multi-model   
 
 
 

• Other + residue iteration 
 
 
 

• Example : strong coupling 
With heavy fluids : modes of structure & fluid give 
poor coupled prediction 

Bases for parametric studies 

Example water filled tank  

With residual Without residual 

[T(p1) T(p2) … ] 

Orthogonalization 

[T] 

[Tk] Rd
k=K-1 R(q(Tk)) 

Orthog [Tk Rd
k] 

41 



MATLAB/SDT TutoParametric 

• Step 1 : Load model 

• Step 2 : Multi-model reduction 

• Step 3 : Analyze frequency/damping evolution 

• Step 4 : Analyze MAC, use modal coordinates 
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Fixed basis : enormous cost reduction 

43 

• Windshield joint complex modes at 
500 design points for ½ cost of 
direct solver 

• Campbell diagram : 200 rotations 
speeds for the cost of 4. 

• Squeal instabilities as function of 
pressure : few pressures 
sufficient for interpolation 

Y,l  SOL107 2200s 

F,w SOL103 300s 

Y,l 
Reduced 

First order 

Error <4% 

490s  

Y,l(500*T) SOL107 ~ 12 days 

Y,l(500*T) 

reduced 

First order 

Error small 

~1000s 



Reduction / response surface / HBM-PGD 
Fixed basis reanalysis 
• Response surface for system matrices 
  TTZ(p)T≈f(p,TTMiT) 
But  
• still dynamic model 
• restitution {q}=[T]{qR} 

provides estimates of all internal states 
Response surface/meta-model methodologies 
• also predict I/O relation 
• but no knowledge of internal state 

 
PGD & HBM methodologies : variable separation of 
higher dim 

𝑞(𝑡, 𝑝) = 𝑇𝑖 𝑠𝑝𝑎𝑐𝑒 𝑇𝑖 𝑡𝑖𝑚𝑒 𝑞𝑖(𝑝)
𝑖

 

 
44 



Conclusions : solvers for dynamics 

Continuous/discrete/reduced models (a brief reminder) 

Full order model solvers 

• Direct frequency resolution 

• Direct time integration (implicit/explicit, first/second order, 
Newmark, …  Gaël Chevallier) 

 

Reduced order model + time/frequency resolution 

• Basic reduction : modal superposition, static correction, Guyan, 
Craig-Bampton, … 

• Modern vision of reduction: learning phase, basis building, DOF 
choice 

• Substructuring 

• Parametric model reduction, error control 

https://savoir.ensam.eu/moodle/course/search.php?search=1874 
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