Exercice 1: Variation de température d'un système (voir tableau 1)

- **1.** Déterminer la **variation de température** associée à un apport de chaleur de 25 kJ pour chacun des systèmes suivants : une pièce en acier de 2 kg et 2 L d'eau.
- 2. Combien de **temps** faut-il pour élever à 19 °C la température d'une pièce de 20 m² initialement à 16 °C ? La pièce est équipée d'un radiateur de 1500 W fonctionnant à sa puissance maximale. En pratique le temps nécessaire est supérieur à celui calculé. Pour quelle raison ?

Exercice 2: Résistances thermiques de parois planes (voir tableaux 1 et 2)

Une paroi de 1 m² est constituée de briques de terre cuite creuses de 20 cm d'épaisseur comportant 48 alvéoles. Ce mur possède une résistance thermique de 0,80 W⁻¹.K.

- 1. Déterminer l'épaisseur d'une paroi de 1 m² présentant la même résistance thermique en :
 - béton plein.
 - laine de verre (ρ = 25 kg.m⁻³).
- 2. Quelle est la résistance thermique d'un mur de 10 m² monté avec les mêmes briques creuses que précédemment ?

Exercice 3: Etude du comportement thermique d'un mur composite (voir tableaux 1, 2 et 3)

On s'intéresse au mur extérieur plan sans ouvertures d'un bâtiment.

La constitution du mur d'une surface **S** = 20 m² est précisée dans le tableau 3.

Données (valeurs conventionnelles):

- Cœfficient d'échange superficiel face intérieure : hi = 8 W.m⁻².K⁻¹
- Cœfficient d'échange superficiel face extérieure : he = 25 W.m⁻².K⁻¹

On se placera dans les conditions suivantes :

- Température de l'air intérieur : Tair int = 19 °C
- Température de l'air extérieur : **Tair ext** = 8 °C
- 1. Représenter le schéma électrique équivalent du mur. Les éléments suivants doivent apparaître :
 - modes de transfert thermique mis en jeu,
 - températures des interfaces,
 - expressions littérales des résistances thermiques (utiliser les symboles de l'énoncé).
- 2. Déterminer le cœfficient d'isolation thermique du mur (expression littérale et application numérique).
- 3. Calculer le flux thermique perdu par la façade (expression littérale et application numérique).
- **4.** Déterminer les **températures** des zones suivantes (expressions littérales et applications numériques) :
 - face intérieure du mur,
 - interfaces entre les différents matériaux,
 - face extérieure du mur.
- **5.** Représenter le **champ de température** dans le système.

Milieu	Air sec	Eau	Acier	Terre cuite	Béton plein	Laine de verre	PSE	Enduit	Plâtre
λ (W.m ⁻¹ .K ⁻¹)	0,024	0,6	45	1,15	1,75	0,035	0,04	0,90	0,35
ρ (kg.m ⁻³)	1,204	1000	7800	1650	2300	25	18	2200	885
c _p (J.kg ⁻¹ .K ⁻¹)	1005	4180	460	1000	1000	850	1250	1005	1000

Tableau 1.

Matériau		Dimensions (e x h x L)	Nb d'alvéoles	Poids unitaire (kg)	M (W ⁻¹ .m ² .K)	
Brique en		20 x 27,4 x 56	48	18,5	0,80	
terre cuite		20 x 27,4 x 56	56	20,3	1,07	
Bloc béton		20 x 20 x 50	6	19	0,23	

Tableau 2.

Référence	Matériau	e (cm)
1	Plâtre	5
2	Polystyrène expansé	15
3	Bloc béton 6 alvéoles	20
4	Enduit	2

Tableau 3.