
Expert Systems - Introduction

Expert system is one representative tool of Artificial Intelligence. Its development
was performed mainly in the 70/80s (the first one was born in 1965). The
objective of this tool is to follow the same kind of reasoning then a Human
(syllogisms and deductions) in order to:

➢ Classify

➢ Decide and Diagnose

Several examples of Expert Systems can be found:

➢ Dendral (1967) : Molecular Physics identification from mass spectrometry

➢ MyCin (1973) : Diagnostic of blood diseases

➢ Sachem (1990) : Control of furnaces

➢ GARI (1981) : Generation of manufacturing plans

➢ PROPEL : Machining plans generation

➢ PART : Machining plans generation

In order to work, this kind of tool needs rules and knowledge supplied by experts
of the domain where the system is used.

[Van Houten 91]

[Brissaud 92]

[Descotte 81]

[Kindsay 67]

97

Expert Systems - Architecture

Expert systems are composed of two main parts :

User
interfaces

In addition, interfaces are provided to ease
exchanges and interaction between
expert systems and users.

Knowledge
Base

Facts
database

Rules
database

➢ The memories composed of rules + facts (the problem to solve and
intermediate results)

Inference
Engine

➢ The Inference Engine, the core of the AI tool, which tries to fire rules
according to the facts available

98

Expert Systems - Knowledge Base - Facts

The Fact base is composed of several facts which are:

➢ Variable (during the reasoning facts are created, other are removed)

➢ Deducted from other facts by the inference engine

➢ Asked to the user if the expert system needs help

The types of facts can be generally:

➢ Boolean facts (True/False)

➢ Symbols (Strings)

➢ Real numbers

These kind of facts are needed to
perform manufacturing generation

99

Expert Systems - Knowledge Base - Rules

The rules formalizes Knowledge needed to perform reasoning. These
rules are described with the If <Assumptions> Then <Conclusions>
structure, where the conclusion of using a rule is the creation or the
modification of facts.

It is possible to express these rules:

“If A AND B Then C”

“If A OR B Then C AND D”

It is not possible to express this rule:

“If A Then (B OR C)”

Example of rule : If (Bore_Diameter > 25 AND Bore_Deepth > 200) Then
Mfg_Operation = Foring AND Tool = Sand256B

The rules base does not evolve during the reasoning.

It is possible to characterize these rules with a confidence degree:
consequently when two rules can potentially be fired, the system will
firstly use the one with the best confidence degree.

100

The different kinds of rules

The power of an expert systems depends on the type of rules it can
handle:

➢ Order 0: The Expert System can only handle Boolean relationships.

Example: If X = True And B = False Then…

➢ Order 0+: In addition to Boolean relations, the system can handle
comparisons operators (such as >, <, =, >= or =<).

Example: If X > 20 And B = False Then…

➢ Order 1: The rules can be expressed with quantifier operators ( :
existential quantifier,  : universal quantifier) of predicate logic.

Example: If  X And X  “value” And Operation(X) <20 Then…

Some rules called Meta-rules are used to describe to the system how it
has to fire rules (mainly selection criteria).

101

Expert Systems - Inference Engine
In order to manage these facts and rules, the inference engine follows a

three step algorithm:

1. Filter: Find all rules triggered by the current facts base

2. Selection: Select the best rule to carry out

3. Activate: Fire the rule and update the facts base

Three type of reasoning (called chaining) are available:
➢ Forward Chaining: Deduct from facts and rules news facts

Rules
Facts
base

Deducted
facts

Update the facts base

➢ Backward Chaining: Prove the validity of a wanted fact

Rules
Wanted

fact

Update the wanted facts base

Facts
needed

➢ (Mixed Chaining) 102

Expert System - Forward Chaining - Algorithm
FB : Initial Facts Base

RB : Rules Base
F : The wanted Fact

Find all applicable rules and select the one with
the best confidence score

Delete the selected rule from the RB

Active the selected rule and update the FB
according to its conclusions

Is the wanted
fact belonging to the FB AND

Are there remaining rules which are
applicable ?

No

Yes

Is the wanted
fact belonging to the FB ?

F is verified

F is not verified

Yes

No

103

Expert System - Forward Chaining - Exercise

Consider the following case:

➢ Initial Facts: FB={B,C}

➢ Rules:

▪ If B And D And E Then F

▪ If G And D Then A

▪ If C And F Then A

▪ If B Then X

▪ If D Then E

▪ If X And A Then H

▪ If C Then D

▪ If X And C Then A

▪ If X And B Then D

Questions : Is the Fact “H” verified ?

Are there only one solution?

Solution
104

Forward Chaining - Brief Synthesis

As a brief conclusion of this algorithm of Forward chaining:

➢ This algorithm is interesting since:
➢ It is very easy to understand, and so, to code

➢ It always stops – no infinite loop - (when all rules are fired or when the Facts base
is empty)

➢ However, the process time can become very long… (depending on
the size of the rules and facts bases)

➢ It is not necessarily the fastest way that the algorithm uses to
perform the fact validation

106

Expert System - Backward Chaining
The Forward chaining is a recursive Algorithm (that’s to say that the algorithm

can call the same one with different inputs (a easier issue to solve)).

FB : Initial Facts Base
RB : Rules Base

F : The wanted Fact

Contruct the gathering ER containing every rules
having the wanted fact as one of their conclusions

Call the Backward chaining algorithm
where: BF=BF, BR=BR, F=F+conditions

Is the wanted
fact belonging to the FB

No

Yes

Yes

Is there
remaining rules

to analyze?

F is verified

No

Is there
 remaining conditions to

check?
No

Yes

Is there at
least one rule ok ?

Store the result of this call to the
condition of the analyzed rule

Next
condition

Calculate the validity of the
rule (=if all condition

analysis is ok, the rule is ok)

Next rule

Yes

No

F is not verified

107

Expert System - Backward Chaining - Example

Consider the following case:

➢ Initial Facts: FB={A,F}

➢ Rules:

▪ If A And B And C Then G

▪ If B And D Then E

▪ If F And G Then E

▪ If A Then H

▪ If B Then C

▪ If E And H Then I

▪ If F Then B

▪ If H And F Then E

Questions : How to verify Fact “I” ?

Are there only one way to verify this fact?

Solution
108

Backward Chaining - Brief Synthesis

As a brief conclusion of this algorithm of Forward chaining:

➢ This algorithm is interesting since:
➢ It doest not need to explore the whole facts base

➢ It can be associated with a user-interface asking to user some questions where
some facts doesn’t belong to rules conditions (like D in the previous example)

➢ However, this algorithm is more difficult to implement and code.

➢ Do to its recursive design, it is possible to explore the same part of
the tree (like, for instance for the fact B in the previous example)

➢ It is not necessarily the fastest way that the algorithm uses to
perform the back tracking (in the previous example using Rule 8 is
an easier way to prove the fact E).

111

Expert System – Exercice #2

We want to build an Expert System to scan professional social networks
(such as LinkedIn.com or Viadeo.com) in order to find interesting profiles
for our company.

112

R1 IF Responsibilities AND Easy speaking AND Speak Dutch THEN Dynamic
R2 IF Easy speaking AND Speak English THEN Adaptable
R3 IF Slav AND Dynamic THEN Adaptable
R4 IF Responsibilities THEN Leadership
R5 IF Easy speaking THEN Speak Dutch
R6 IF Adaptable AND Leadership THEN Interesting Profile
R7 IF Slav THEN Easy speaking
R8 IF Leadership AND Slav THEN Adaptable

Use the forward chaining to identify what are the deducted facts if
the initial fact is only: “Slav” (an Indo-European ethno-linguistic
group).

Expert System – Exercice #2

113

We want to understand how the fact “Interesting Profile” can be
reached with backward chaining approach. To do so, build
completely the deduction tree leading to this fact. What are non-
demonstrable facts which are needed to validate the fact “Interesting
Profile”? Are there useless facts and/or rules for this chaining?

Example of an Expert Systems - CLIPS

Presentation of CLIPS Tool:
➢ CLIPS is a free tool (public domain) for building

expert systems by proposing a framework where it is
possible to:
➢ Express rules

➢ Describe facts

➢ Run all type of chaining (improved version of those
seen previously in this course)

➢ It was firstly developed by the NASA in the 80s and
is still updated (the last version, 6.24 was released in
April 2008)

➢ CLIPS proposed several tools to ease the debugging of rules translation
into LISP language, to check consistency of rules bases…

➢ It provides connectors to integrate CLIPS routines into bigger programs

For these reasons, this tool is selected to illustrate several cases of
Expert Systems use in Manufacturing plans generation.

114

CLIPS - User Interface

Programming
Window

Agenda Window
(where the reasoning is

displayed) Facts (Base)
Window

115

CLIPS - Facts

Facts are easily handled in CLIPS:

➢ They can be easy ones:

(assert OneFact)

➢ Or structured and so more detailed and powerful ones:

➢ By using structure

(deftemplate NameOfTemplate “Comment about the Structure”

(slot Attribute1

(Type TypeoftheAttribute)

(default ValuebyDefault))

(slot Attribute2

…

(default ValuebyDefault)))

➢ By using classes (same definition than the template but having inheritance
operator (=is-a))

➢ They can be stored in a kind of database called deffacts

Name of template

Attribute’s
definition

116

CLIPS - Facts - Examples

➢ Simple facts

(assert Cost_Limit 5600)

(assert Bore Diameter 25 Length 45)

➢ Templates

➢ Template Definition

(deftemplate Threaded_Bore “Definition of Threaded Bore geometrical feature”

(slot Name (type Symbol) (default none))

(slot Length (type Float) (default 0.0))

(slot Diameter (type Float) (default 0.0))

(slot Thread (type Integer) (default 0)))

➢ Template Use

(assert (Threaded_Bore (Name f12) (Length 45) (Diameter 25) (Thread 1)))

117

CLIPS - Rules

The rules in CLIPS are:

➢ Written in a kind of LISP Language

➢ Follow this format:

(defrule Rule_Name “Optional Comments”

(declare (salience Integer))
(condition_ 1)
…
(condition_n)

=>
(action_1)
…
(action_m))

➢ Can be prioritized with the salience parameter (from -5000 to 5000)
➢ Can use variable to make filters (simple or complex ones) or just to make

links between data from several facts in a rule
➢ Single value: ?VariableName
➢ Multiple values: $?

Name of rule

Assumptions (If)

Conclusions (Then)

118

Salience definition

CLIPS - Rules - Examples

Several examples of rules:

➢ Simple:

(defrule Rule_1 "Rule 1"

(B)

(D)

(E)

=>

(assert(F)))

➢ More complex:

(defrule VolumeOk "Calculate de Volume to Machine"

(Threaded_Bore (Diameter ?Dia) (Length ?Len) (Thread 0) (Name ?Nam))

(test (< (* ?Dia ?Len) 2500))

=>

(printout t "Ok volume machinable for the feature " ?Nam crlf))

Using the template previously defined

Variable definition

Displaying the result of the activation of the rule

119

CLIPS - Handling facts

Facts can be: asserted (like previously illustrated), retracted or
modified. To retract or modify a particular fact (meeting the criteria of a
rule), it is mandatory to store it previously in one variable:

(defrule VolumeOk "Calculate de Volume to Machine"

?feature <- (Threaded_Bore (Diameter ?Dia) (Length ?Len) (Thread 0)
(Name ?Nam))

(test (< (* ?Dia ?Len) 2500))

=>

(printout t "Ok volume machinable for the feature " ?Nam crlf)

)

120

The fact is stored
in the variable

The fact is deleted

(retract ?feature)

The modifications
concern slots of the fact

(modify ?feature (Length 0.0) (Diameter 0.0))

CLIPS - Handling facts

Facts can be: asserted (like previously illustrated), retracted or
modified. To retract or modify a particular fact (meeting the criteria of a
rule), it is mandatory to store it previously in one variable:

(defrule VolumeOk "Calculate de Volume to Machine"

?feature <- (Threaded_Bore (Diameter ?Dia) (Length ?Len) (Thread 0)
(Name ?Nam))

(test (< (* ?Dia ?Len) 2500))

=>

(printout t "Ok volume machinable for the feature " ?Nam crlf)

)

121

The fact is stored
in the variable

CLIPS - Operators

Several operators are available in CLIPS. They used the prefix form. In
the prefix form of CLIPS, the function precedes the arguments, and
parentheses must surround the numeric expression : (+ 2 3)

They can be combined, for instance 2*(3+7): (* 2 (+ 3 7))

Several classic operators are available : +, -, *, /, ** (²), sqrt, max, min,
abs… Several extended math functions are available(trig, hyperbolic…)

It is possible to store the result of any operation (simple or complex ones)
into a variable through the binding instruction: (bind ?result (+ 2 3)). It
is useful when this result is needed for rule criteria.

You can build your own functions (with the instruction deffunction)

122

CLIPS - DEMOs and Works

Several demos are proposed to illustrate how does CLIPS work:

Example 1: Description of the problem use to illustrate the forward
chaining
Aim: To see how facts and rules work in CLIPS

Example 2: A small example of templates and variable use in rules
Aim: To see how variables can be used

Example 3: Using Expert System to generate conceptual process planning
with interactions with the user

Example 4: Using Expert System to generate the process plan of prismatic
part with only axial features (hole, drilling…) in order to assess the
machining cost

123

CLIPS - Conceptual Process planning

[Houin 05] proposed to use expert system to follow the Ashby's approach coded in
its tool CES. Expert System is used as a constraint program which is able to
select processes compatible with several constraints are user preferences:

Features characteristics

Find processes belonging to
all these lists

What is the
user

Preference?

Instanciation of the
Class solution

List of Process_possibleList of Process_possible

List of Selected processesList of Selected processes
124

Expert Systems - Drawbacks

The drawbacks of this approach depends mainly on the drawbacks of
rules based systems:
➢ The difficulty to identify and express rules:

➢ It is difficult for expert to identify and express how they work and what is the
different steps of their reasoning.

➢ Experts of the domain handled by the Expert System (and so who are the most
suitable to express rules) are not computer scientist: it is then difficult to
translate these rules into logical language which are used to code rules
(especially LISP which needs to be prepared to use it).

➢ The previous drawback can be solve thanks to the service of a Knowledge
engineer. However adding an intermediate in the extraction flow decreases the
quality of the Knowledge extracted.

➢ How expert systems can manage rules based on fuzzy expression of Knowledge?
Example: If the hole is large then… What large means, how to express it into
rules?

➢ The difficulty to manage these rules:
➢ Difficulty of managing the consistency of hundreds of rules

➢ Difficulty to perform the maintenance of rules base (to modify, add and remove
rules)

➢ Some experts have the black box effect when using Expert Systems
126

CLIPS Lab - PAG V1.0

The aim of this little Lab is to develop a simple implementation of PAG
approach with CLIPS system:

➢ Defining concepts (Feature, Operation, Tool)

➢ Defining rules (Cutting Tool Chart)

➢ Running inferences

127

Concepts definition - Feature

Three Concepts have to be defined by using CLIPS template with their
descriptive parameters:

➢ Machining Feature

➢ Name (SYMBOL)

➢ Type (SYMBOL)

➢ Diameter (FLOAT)

➢ Depth (FLOAT)

➢ Tapping (TRUE or FALSE)

➢ Type of Bottom (SYMBOL). Two values are considered : “Square” and
“Conical”

➢ Chamfer (TRUE or FALSE)

128

Instantiations - Features

The first concept to instantiate is the Feature one. Add to fact base (by
using a Initial-Fact Rule) the features describing the part below.

130

40

35

25

10

20

10

33

20

18

15

Manufacturing Rules

➢ By using the DefRule pattern in CLIPS, express the rule above,
synthetized into a cutting tool chart

➢ After a first run, by modifying the salience parameter, modify the behavior
of the program to force him to machine first the tapping and chamfer

132

Type of

Feature
Constraints on its parameters Machining Operation Feature resulting

Non through
bore

Tapping = False

Bottom Conical

Length/Diameter ≥2

Deep Drilling
Raw material (no feature

remains)

Tapping = False

Bottom Square

Diameter >20

Countersinking
Bottom conical

Diameter = 15

Tapping = False

Bottom Conical
Drilling

Raw material (no feature

remains)

Through
bore

Tapping = False

Diameter >10
Drilling

The same having it diameter

divided by 2

Tapping = False

Diameter <15
Drilling

Raw material (no feature

remains)

Both
Tapping = True Tapping The same having no tapping

Chamfer= True Chamfer The same having no chamfer

Tool and Operation - Template & Rule

➢ Tool

➢ Name (SYMBOLS)

➢ Type (SYMBOLS). Three main types are considered : “Drill”, “Milling cutter” and
“Turning tool”

➢ The diameter (FLOAT)

➢ The cutting length (FLOAT)

➢ Machining Operation

➢ Feature Name (SYMBOLS)

➢ Operation Name (SYMBOLS)

➢ Modify manufacturing rules to manage compatibility between tools and
features (regarding their diameters and length)

133

Rules Improvements

Of course this first try can be strongly improved by:

➢ Preventing the system from generating dead ends

➢ Taking into account the relationships linking features

➢ Taking into account machines and their capabilities

➢ Taking into account deviations of resources

➢ Handling the whole PAG network, not only one branch

➢ …

134

