
How to process data and extract Knowledge from it ?

Example on Artificial Neural Network – ANN – Definition, structure and tools

128

Neuron: From biological to artificial

129

Nucleus

We have about 100 billions neurons. Each is connected to about 100000
others. How does it work ? - From other neurons, through synapses, electrochemical

signals enter into the neuron

- The amount of power of these signals can reach a
threshold, which activates the neuron

- Generating a new signal to its neighbours

Neuron: From biological to artificial

130

The artificial neurone has the same structure and behaviour:

𝑥0

𝑥1

𝑥2

𝜎(f(𝑥𝑖 , 𝑤𝑖))

𝑤0

𝑤1

𝑤2

Zoo of neural networks

A lot of different structure of Neural Networks are available in the
literature:

 From the simple and/or classical ones:

 To more complex ones:

131

Zoo of neural networks

This leads to an increasing numbers
of approaches, type of neurons,
type of connections…

Several are dedicated to a particular
goal, for instance:

 Recurrent Neural Network
(RNN) are often used to manage
sequence prediction problems
(text, language…)

 Convolutional Neural Network
(CNN) are mainly used to process
images

This course only focused on the
classical and simple one : Multi
Layer Perceptron (MLP)

132The Asimov Institute – The Neural Network Zoo

What’s new in ANN since 1940?

Two main improvements ease the performances of ANN:

 The computer performances (GPU increasing performances) enable the
increasing of complexity (layers) of artificial neural networks

 The amount of data available is strongly increasing (more captors, Internet,
IoT, connected devises…) => more cases to learn by the ANN

 New algorithms and approaches

133

What to do with an MLP ?

MLP are commonly selected to solve classical data problems:

134

 Classification problems when the goal is to identify to which group a new
observation belongs to (2 classes or more…). The separator can be linear or
not (=> Effect on the complexity of the MLP)

 Regression problems when the goal is to find an approximation of a
function (not known or too costly to evaluate) represented by a dataset

Modelling of an artificial neuron

135

𝑎𝑗
𝑤𝑗,𝑖

Activation
Input

function
Output

 න 𝑎𝑖
Input
links

Output
links

𝒂𝒊 = 𝒈(𝒃𝒊 +𝒂𝒌 . 𝒘𝒌,𝒊)

𝑵𝒆𝒖𝒓𝒐𝒏𝒊

𝑎𝑗

Where:

activation value of neuron j

weight on the link from neuron j to neuron i

weighted sum of inputs to neuron i + the bias

activation function of neuron i

bias of neuron i

𝑤𝑗,𝑖

𝑧𝑖
𝑔𝑖

𝑏𝑖

𝑏𝑖

Activation functions

Several activation functions are available regarding what is the purpose of
the ANN and the type of data handled.

136

Linear function

Dedicated to regression

No transformation

𝒖 = 𝒙

𝒖 = 𝐦𝐚𝐱(𝟎; 𝒙)

ReLU (Rectified Linear Units)

Filter negative values

Use in Deep Learning (easy to
calculate (evaluation and
derivation)

Activation functions

137

Sigmoïd

Move the activation in [0, 1] range

Use for Classification
𝒖 =

𝟏

𝟏 + 𝒆−𝒙

Hyperbolic Tangent

Move the activation in [-1, 1] range

Use for Classification
𝒖 =

𝒆𝟐𝒙 − 𝟏

𝒆𝟐𝒙 + 𝟏

Forward Pass

The process followed by an ANN to evaluate its outputs regarding a case is
called the forward pass. Consider this simple network (sigmoid and bias
= 1).

138

Forward Pass

- Calculate the weighted
sum of their inputs

1

0

0.5

0.5

0

1

0.5

0.5

1

0.5

- Add the bias

- Apply the activation
function and generate
the output value

From the inputs whose outputs are known, for each neuron :

(1 ∗ 0.5 + 0 ∗ 0) + 1

- Complete the layer and
go to next one

1 + 𝑒−

0.7

0

1
= 𝟎. 𝟖𝟐

0.82 0.90

0.860.82

Error !

Loss function - Definition

The loss function (𝐋(𝜽) = 𝒇(𝒀𝒊, 𝒀𝒊)) models the error due to the
configuration 𝜃 = (𝑊, 𝑏) of the ANN (weights, biases).

The goal is then to find the best configuration minimizing the loss

function: 𝜃𝑏𝑒𝑠𝑡 = 𝐴𝑟𝑔𝑚𝑖𝑛𝜃 (𝑓(𝑌𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝜃), 𝑌𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔))

Examples of loss functions:

 Mean Square Method (MSM): 𝑀𝑆𝑀 =
1

𝑛
.σ𝑖,𝑗(

𝑦𝑖𝑗 𝜃 − 𝑦𝑖𝑗)
2

 Mean Absolute Error (MAE): 𝑀𝐴𝐸 =
1

𝑛
. σ𝑖,𝑗

𝑦𝑖𝑗 𝜃 − 𝑦𝑖𝑗

 Cross Entropy Loss (for binary classifications):

𝐶𝐸𝐿 =
1

𝑛
.

𝑖,𝑗

−𝑦𝑖𝑗 log 𝑦𝑖𝑗 𝜃 + 1 − 𝑦𝑖𝑗 log(1 − 𝑦𝑖𝑗 𝜃)

139

Loss function - Optimization of the ANN

140

Figure from https://www.pyimagesearch.com

To find the best configuration of the network, the goal is to find the
minimum of the loss function in the domain space of all parameters (𝜃 =
(𝑊, 𝑏)).

Since no mathematical expression are available, numerical approaches are
mandatory.

Learning - From prediction errors

The goal of the learning phase is to minimize the loss function (due to all
weights and biases of the network) by using a gradient approach:

𝜽 = 𝜽 − 𝝀. 𝜟𝑳(𝜽)

Where 𝜆 is the learning rate. Take care how this parameter is quantified!

141

𝜆 too low : long time to converge
and be trapped in local optimum

𝜆 too big : chaotic exploration with
big risk of divergence!

It is possible to define dynamic 𝜆, decreasing during the convergence. To
avoid getting stuck by a local minimum, a momentum can be defined

Loss function evolutions

142

Plotting the evolution of the loss during the training is a good way to
adjust its main parameter : the learning rate 𝜆.

lo
ss

 f
u

n
ct

io
n

Number of iteration (epoch)

Too high learning rate
(divergence)

Low learning rate
(time consuming)

High learning rate
(trapped in a local minimum)

Adequate learning rate

Gradient Descent - Strategies to calculate it

Three main strategies are used to calculate the loss gradient 𝜟𝑳(𝜽) and so
to train the system:

 Batch Gradient Descent: the gradient is calculate on the whole set of
database. This approach is, of course very long, but it increases the
convergence

 Stochastic Gradient Descent: the gradient is calculate on each input of
the database. This increases the speed of the (weights, biases) updates but
risks to face instabilities

 Mini-Batch Gradient Descent: batches are generated randomly from the
database to mix the two previous strategies: all the data of a batch are used
to evaluate the gradient which is used to update the ANN’s parameters.

143

Back propagation - Last Layer

For the kth weight in the last layer, with the ith case, the gradient is
defined:

𝛿𝐿𝑖

𝛿𝑤𝑘
[𝑛]

=
𝛿𝐿𝑖
𝛿𝑦𝑖𝑘

.
𝛿𝑦𝑖𝑘

𝛿𝑧𝑘
[𝑛]

.
𝛿𝑧𝑘

[𝑛]

𝛿𝑤𝑘
[𝑛]

𝛿𝐿𝑖

𝛿𝑏𝑘
[𝑛]

=
𝛿𝐿𝑖
𝛿𝑦𝑖𝑘

. 𝑔′ 𝑎𝑘
[𝑛]

Example with the MSM + Sigmoid:

𝛿𝐿𝑖

𝛿𝑤
𝑘
[𝑛] = (𝑦𝑖𝑘 − 𝑦𝑖𝑘). (𝑦𝑖𝑘 .(1 - ෞ𝑦𝑖𝑘)) . 𝑎𝑘

[𝑛−1]

Then the new weight is calculated:

𝑤𝑘
[𝑛]

= 𝑤𝑘
[𝑛]

- 𝝀. (𝑦𝑖𝑘 − 𝑦𝑖𝑘). (𝑦𝑖𝑘 .(1 - ෞ𝑦𝑖𝑘)) . 𝑎𝑘
[𝑛−1]

144

Effect of the considered neuron on the global loss

Effect of the input of the neuron on its output

Effect of the considered weight on the input

=
𝛿𝐿𝑖
𝛿𝑦𝑖𝑘

. 𝑔′ 𝑎𝑘
[𝑛]

. 𝑎𝑘
[𝑛−1]

Back propagation - Hidden Layer(s)

For the hidden layers (𝑙 ≠ 𝑛), the weight have more way to impact the
gradient. This equation gives the way to modify all weights:

𝑤𝑖𝑗
[𝑙]

= 𝑤𝑖𝑗
[𝑙]

- 𝜆. 𝑒𝑖
[𝑙]
. 𝑎𝑗

[𝑙−1]

With 𝑎𝑗
[0]

is the 𝑥𝑖𝑗(the jth element of the ith case)

Where 𝑒𝑗
[𝑙]

is defined in a recursive way:

𝑒𝑗
[𝑙−1]

= 𝑔′ 𝑎𝑗
𝑙−1

. σ𝑘𝑤𝑘𝑗
[𝑙]

. 𝑒𝑘
[𝑙]

𝑒𝑗
[𝑛]

= (𝑦𝑖𝑗 − 𝑦𝑖𝑗). 𝑔′(𝑎𝑗
𝑛
)

145

Back propagation - Example

Considering the total error 𝑳 is calculated with:

Learning rate 𝜆 = 0.1

146

1

0

0.5

0.5

0

1

0.5

0.5

1

0.5

0.7

0

0.82 0.90

0.860.82

errors !

Back Propagation

𝐿 =
1

2
.

𝑖,𝑗

(𝑦𝑖𝑗 𝜃 − 𝑦𝑖𝑗)
2

L = 0.39

New_𝑤11
[𝑛]

= 𝑤11
[𝑛]

- 𝝀. (𝑦𝑖𝑘 −

𝑦𝑖𝑘). (𝑦𝑖𝑘 .(1 - ෞ𝑦𝑖𝑘)) . 𝑎𝑘
[𝑛−1]

𝑤11
[𝑛]

New_𝑤11
[𝑛]

= 0.5-0.1*
(0.9−0.7)*(0.9*(1 - 0.9)) ∗ 0.82

New_𝑤11
[𝑛]

= 0.499

New_𝑤12
[𝑛]

= 0.5-0.1* (0.86 −

0)*(0.86*(1 - 0.86)) ∗ 0.82

New_𝑤12
[𝑛]

= 0.491

𝑤12
[𝑛]

Back propagation - Example

Considering the total error 𝑳 is calculated with:

Learning rate 𝜆 = 0.1

147

1

0

0.5

0.5

0

1

0.5

0.5

1

0.5

0.7

0

0.82 0.90

0.860.82

errors !

Back Propagation

𝐿 =
1

2
.

𝑖,𝑗

(𝑦𝑖𝑗 𝜃 − 𝑦𝑖𝑗)
2

L = 0.39

New_𝑤11
[𝑛−1]

= 𝑤11
[𝑛−1]

- 𝜆. 𝑒0
[1]
. 𝑎0

[0]

𝑒0
[1]

= 𝑔′ 𝑎0
𝑙−1

. σ𝑘𝑤𝑘𝑗
[𝑙]

. 𝑒𝑘
[𝑙]

𝑒0
[1]

= 0.82 ∗ (1 − 0.82). σ𝑘𝑤𝑘𝑗
[𝑙]

. 𝑒𝑘
[𝑙]

Or 𝑒𝑘
[𝑙]

were already calculated on the

previous step:

𝑒0
[𝑙]

= (0.9-0.7)*0.9*(1-0.9) = 0.018

𝑒1
[𝑙]

= (0.86-0)*0.86*(1-0.86)= 0.103

𝑒0
[1]

= 0.148.(0.018∗0.5+0.103∗0.5) =
0.009

New_𝑤11
[𝑛−1]

= 0.5- 0.1* 0.009 ∗ 1 =
0.499

𝑤11
[𝑛]

𝑤12
[𝑛]

𝑤11
[𝑛−1]

After applying the backpropagation, we can see the effect of these new
weights on the loss function. The same work must be done on the biases.

148

Back propagation - Example

1

0

0.5

0.5

0

1

0.5

0.5

1

0.5

0.7

0

0.82 0.90

0.860.82

L = 0.388

Back Propagation

1

0

0.499

0.499

0

1

0.499

0.491

0.998

0.491

0.7

0

0.82 0.90

0.860.82

1

0

0.499

0.499

0

1

0.499

0.491

0.998

0.491

0.7

0

0.817 0.902

0.8580.817

Forward Pass

When the feed forward was
applied on the network…

Evaluate the new weights
and biases through back
propagation

Redo the feed forward on
this new configuration and
assess the new loss function

… and continue until
reaching the convergence or
the stopping criteria…

Issue - Overfitting

Overfitting happens when the loss function is good (very low) on the
learning set, but is not able to generalize its predictions to additional or
unseen examples.

This problem, in regression purpose, is very close to polynomial
approximation issues (selection of the right polynomial degree).

149OverfittingUnderfitting

Overfitting - Solutions

To avoid the overfitting situation, two main solutions are used:

150

lo
ss

 f
u

n
ct

io
n

Number of iteration

Early stopping

Validation set
Training set

 Early Stopping: Among the
dataset, some are kept in a
validation set that is not used by
the ANN for its learning phase.
The loss function is calculated
on both train and validation sets.
If after several iterations the loss
function of validation set didn’t
improve, stop the training.

 Dropout: To avoid having neurons specializing on a particular
example, the dropout approach randomly switch off some
neurons during the training.

Then, how to split the dataset ?

To train an ANN, to test it and to avoid it from over-training, three pack of
points are required:

151

Training set Validation set Test set

Where:

 The training set is used to train the ANN (for the back propagation
purpose)

 The validation set, which is composed of unseen cases, is used to check
during the training if the system is facing over-fitting or over-training
issues

 The test set is used when the training is complete to verify the
performances of the trained ANN. Try to have a representative set for the
final validation (points well distributed in the domain)

 The distributions between these sets are generally following these rates:
60% / 20% / 20%

Neural Network - Complete Algorithm

152

Feed forward on the training data

Initialisation of the weights
and biases

Evaluation of the error

Propagate ?

Generate weights and biases of
output layer

By back propagation, generate
weights and biases of hidden

layer(s)

Not yet
=> Next training step

Training session
completed ?

Next
training

step

Is the stop criteria validated ?

Early stopping ?

Reset error

Stop

Restart with the training set

You and the Machine Learning process

153

You have to take a lot of decisions to build and improve the ANN meeting
your expectations and the type of data you want to process:

Available
data

Processed
data

Output
data

Pre-processing
ANN

Algorithm

training

D
ata id

en
tificatio

n

D
ata clean

in
g

 &
 selectio

n

S
electio

n
 o

f
P

aram
eters &

h
yp

er p
aram

eters

E
rr

o
r

an
al

ys
is

improvements

Exercice : A simple classification Perceptron

Design and implement in Python (without any ANN oriented lib) a
simple perceptron (no hidden layer) being able to make classification of a
set of points.

154

The points are considered class_0 if the sum or their coordinate is less
than 100 (in red), class_1 in the other case (in green). The range of the
analysed points is [0,100] for both x-axis and y-axis.

Exercice : A simple classification Perceptron

Implement a simple Perceptron in python (with numpy and
matplotlib) meeting these requirements:

 2 input neurons (x and y values)

 1 output neuron. Since the goal is to make classification between two
classes, use a Boolean parameter.

 Activation function has to be selected among: sigmoid or hyperbolic
tangent. Prefer sigmoid with is easier to derivate.

 The initial weights and biases are generated randomly, as the dataset used
to train the system. Take a training set of 250 points.

 Don’t forget to normalize the input data ! (use numpy mean and std)

After implementing your Perceptron validate it by:

 Plot in a graph the error of your ANN at each step of its learning phase

 Define the criteria to stop the training process (error less than an a
threshold, number of trainings performed…)

 Test the accuracy of your model with a set or randomly generated points in
the same range [0, 100] which doesn’t belong to the training set

155

Exercice : structure of the program

In order to guide your work, you can follow these different steps/goals:

• Generate of the training set (use random package)

• Define the variables needed to describe the parameters of the ANN

• Define the forward propagation function

• Define the loss function

• Define the back propagation function (you can choose the type of gradient
descent)

• Include all this stuff into a loop to generate several updates of the ANN
parameters

156

Exercice: Tips and real cases

With the sigmoid function and with the MSM, the updating of weights
and biases in a perceptron (no hidden layer) follow this mathematical
relation:

𝑤𝑖 = 𝑤𝑖 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟 ∗ 𝑔′ 𝑧 . 𝑥𝑖

𝑏𝑖 = 𝑏𝑖 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟 ∗ 𝑔′ 𝑧 .1

As soon as your model is correct, try to train your perceptron on a new
case, where the boundary is not linear (for instance x² + y² < 1). Analyse
the efficiency of the perceptron in this new case.

157

Useful Python Libraries - Keras

Several Python packages are available to design ANN and train them.
Among them, Tensorflow, sci-kit learn, Theano and keras (with can be
seen as an interface to ease the definition of an ANN) are very powerful
(direct use of the computing power of GPU Graphic Power Unit) and easy
to handle.

You can find several resources on Internet:

 Installation of Keras with Anaconda framework: Link and on SAVOIR

 Several examples of the definition and implementation of MLP (called
sequential models in keras): Link (keras website), Link and Link

158

Several books are available (mainly in English)
explaining how to use these Python libs.

https://www.tensorflow.org/
https://scikit-learn.org/stable/
http://www.deeplearning.net/software/theano/
https://keras.io/
https://towardsdatascience.com/installing-keras-tensorflow-using-anaconda-for-machine-learning-44ab28ff39cb
https://keras.io/getting-started/sequential-model-guide/
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://machinelearningmastery.com/build-multi-layer-perceptron-neural-network-models-keras/

Structure of a Keras program

The structure of an ANN designed in Keras follow this structure:

159

Import all the mandatory packages

Load and process the dataset (normalize + split into
the 3 sets (training, validation and test))

Define the structure of the ANN (layers and their
characteristics)

Run the learning phase (after defining the loss function,
and the optimisation behaviour)

Consult the results and the ANN final configuration
(weights and biases) and save the configuration

Use the ANN final configuration
to new cases

Packages import

As usual in python, it is necessary to import a set of packages needed to define,
train and use an artificial neural network:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.utils import plot_model

160

Package to define a MLP

Package to
structure a MLP

Package to define the
minimisation

parameters of the
back-propagation

Package to plot and represent
the network

Structuring the layer(s)

As soon as the MLP is defined (Sequencial Neural Network), you can easily add
one by one its layers by describing their key parameters:

• its name

• the number of neurons allocated to the layer (first input parameter, mandatory)

• for the first layer (only), the number of input neurons (input_dim)

• the type of activation function (activation to select among: 'relu', 'sigmoid',
'linear', 'tanh',…) => Only one activation function can be allocated to all
neurons of a layer

• the activation of bias or not (True or False)

Example:
my_network = Sequential()

my_network.add(Dense(20, input_dim = 10, activation = 'relu’))

my_network.add(Dense(4, activation = 'sigmoid'))

It’s important to check that the model is consistent, for instance that
input_dim is equal to the dimension of training data, or in the case of
classification that the final layer has an activation function compatible
(sigmoid, tanh…)

161

Check the structure

Several methods are available to access to the structure of the network:

• Summary(): generates the structure and print it on the debug console

• If you want to have a graphical feedbacks of the structure of your ANN, it is possible
to generate an image of it. To do so, import plot_model from
tensorflow.keras.utils.

plot_model(my_network, to_file='model_plot.png', show_shapes=True)

162

Back-propagation parameters

As soon as the structure defined, it is necessary to define the learning parameters :

 The selection of the gradient parameters (learning rate and the momentum),
describing the optimisation parameters:

Op_params = SGD(learning_rate, momentum), both are float numbers

 The selection of the loss function among the ones available

 For regression: 'mean_squared_error', 'mean_absolute_error’

 For classification: 'binary_crossentropy’ (2 classes), 'categorical_crossentropy’
(more than 2 classes)

 The choice of the performance indicator (analysis of the accuracy of the ANN)
among the ones available ('accuracy' and 'binary_accuracy')

Example:

op_params = SGD(0.1 , 0.9)

my_network.compile(loss='binary_crossentropy', optimizer= op_params,
metrics=['binary_accuracy'])

163

Learning definition and running

The network is now ready to be trained. To do so, the next step aims at defining
and running the training. The method to use is fit, which is waiting for a set of
input parameters:

• The input dataset (as a numpy or a python list of list) - mandatory

• The output dataset (same constraint than for the input) - mandatory

• The epochs (integer the number of iteration) – mandatory - mandatory

• The batch_size (integer defining the size of the mini-batch)

• The validation_split, float number representing the part of the dataset to use for the
validation of the network. It is possible to give through the input parameter
validation_inputs the value to consider as validation set.

• Verbose (0,1,2) to define the type of feedbacks given during the training (from
nothing to complete)

Example:

my_network.fit(Inputs, Outputs, epochs = 1500, batch_size = 250)

164

Training run

During the training, if verbose parameter is defined to 2, you can see the evolution
of the loss function and the accuracy function if you selected or defined them.

165

Evaluation of the loss
function on the epochEvolution of the

batch processing

Current epoch (iteration of the
training phase)

Training - Evolution of loss and accuracy 1/2

It is possible to have access to the evolution of the loss (of the training and
validation sets) and metrics (accuracy selected on the parameters of the fit
function) after the training of a network, since Keras stores all this data in an
history.

For example:

my_history = my_network.fit(Inputs, Outputs, epochs = 1500, batch_size =
250)

To access this information, store into a variable the result of the fit function. From
this variable you can have access to this history. Before requesting any data, you
can firstly check the ones available by using the keys() parameter of the history.

For example:

print(my_history.history.keys())

166

Training - Evolution of loss and accuracy 2/2

As soon as checked the data available in the history, you can access or plot them.
As an example, this code will plot the evolution of the accuracy and loss function
of the training defined on the previous slide:

plt.figure("Evolution of loss and accuracy during the training")

plt.plot(my_history.history['loss'], label="loss")

plt.plot(my_history.history['binary_accuracy'], label="accuracy")

plt.xlabel('epoch')

plt.legend(['loss', 'accuracy'], loc='right')

167

Use a trained network

As soon as the network is trained and its accuracy is considered satisfactory, it is
possible to use it on new cases to predict their output or to classify them.

The instructions available in keras depends on the type of ANN:

• For regression problems: the method predict takes as inputs a batch of cases/points
and generates the output vector (as a numpy matrix or vector) regarding the current
configuration of the network

• For classification problems: the method predict_classes takes as inputs a batch of
cases/points and generates the output vector regarding the current configuration of
the network

Example:

my_network.predict(Inputs_to_test)

168

Classification – Confusion Matrix

In classification problems, it is possible to calculate the confusion matrix
that synthetises the accuracy (good prediction) of the classifier and
underlining the main risks :

 Alpha: predicting False something that is True

 Beta: predicting as True something that is False

169

β

α

Prediction

T
ru

e
la

b
el

T
ru

e
Fa

ls
e

True False

Classification – Confusion Matrix

To easily handle the confusion matrix, the sci-kit learn package is relevant
and fully compatible with keras trained neural networks.

from sklearn.metrics import confusion_matrix

predictions = ANN.predict_classes(Inputs)

c = confusion_matrix(y_true, y_pred)

print(c)

170

Access to the parameters of the ANN

It is possible to have a look at the parameters (weights and bias) of each neuron of
the network, to check the relative importance of a neuron (input or intermediate
one). To do so, use the method weights.

In the case of a MLP composed by 1 hidden layer of 2 neurons and one output
neuron, the result has this shape:

171

Input weights of each neuron
composing the first hidden layer

Biases of each neuron composing
the first hidden layer

Analyse features importance - Shap

Since the analysis of the weights is quite complicate, even more on
complex model, several tools are available to analyse the importance of
input neurons on the predictions.

It can be relevant to compare this analysis with statistical analysis of the
input data before training to detect some biases due to the network
structure.

172

…

https://shap-lrjball.readthedocs.io/en/latest/generated/shap.summary_plot.html?highlight=summary_plot

Analyse features importance - SHAP

Code example:

import shap as sh

explainer = sh.DeepExplainer(network, shap_data)

shap_values = explainer.shap_values(other_input_data)

sh.initjs()

sh.summary_plot(shap_values, headers)

173

Set of input data (about 50/100
points) in numpy format

Neural network developped in
tensorflow/keras packages

Set of input data (about 200
points) in numpy format different
from the previous set of points

List of the labels (column names) of
the tested parameters (input

parameters)

Save a trained network (to re-use after)

As soon as an ANN is trained and considered accurate, it is fortunately not
necessary to re-train at each use. It is then possible to save and load a network
already trained and configured.

First of all, import the loading functions to your python program:

from tensorflow.keras.models import load_model

From now, you can easily:

 Save your trained model with the function save(filename)

 Load your trained model with the function load_model(filename)

Example:

my_network.save("My_network.keras")

my_new_network = load_model("My_network.keras")

my_new_network.summary()

…

174

Exercices

By using keras + numpy packages, please complete these exercises:

 Design a simple perceptron where the separator is linear

 Design a perceptron where the separator is not linear (see the previous exercise with
the separator is a circle)

 From this perceptron, add hidden layers to increase the accuracy of this classification
neural network

For these 3 cases, check the structure of the design network, see the value of the weights and
biases and save them.

175

To go further… documents and videos

Videos on YouTube:

 3blue1brown propose an interesting an well animated explanation of the working of a
neural network for hand writing recognition): Link

 Open course proposed by MIT: See more particularly videos 12a and 12b in this
playlist: Link

Blogs and websites:

 Keras webpage: Link

 Complete guide to ANN (not only MLP): Link

 Blog about ANN and deep learning: Link

 Another blog about machine and deep learning: Link

 Clear explanation of backpropagation on a example: Link

 Several datasets proposed: Link

Several books are available in the library (or online see ENI edition)!

176

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=TjZBTDzGeGg
https://faroit.com/keras-docs/1.0.0/
https://missinglink.ai/guides/neural-network-concepts/complete-guide-artificial-neural-networks/
https://www.machinecurve.com/index.php/category/deep-learning/
https://machinelearningmastery.com/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://archive.ics.uci.edu/ml/datasets/

