

. rrom DIOoIO

We have about 100 billions neurons. Each is connected to about 100000

: ” .
others. How does it work ? _ From other neurons, through synapses, electrochemical

signals enter into the neuron

- The amount of power of these signals can reach a
threshold, which activates the neuron

- Generating a new signal to its neighbours

'Dendrites

> |

129

Py

leuron: From biolog

The artificial neurone has the same structure and behaviour:

Dendrites

Axon terminals
|
f

Axon
AT AN

130

/

A lot of different structure of Neural Networks are available in the

literature:

eural netw

e From the simple and/or classical ones:

Perceptron (P) Feed Forward (FF)

. s

e To more complex ones:

| XXX X

Deep Convolutional Inverse Graphics Network (DCIGN)

~ -~
N e

131

—

A mostly complete chart of

O Backfed Input Cell N e u ra l N etWO r ks Deep Feed Forward (DFF)
e u r a n e W Input Cell ©2016 Fjodor van Veen - asimovinstitute.org
4.

/A Noisy Input Cell

Perceptron (P) Feed Forward (FF) | Radial Basis Network (RBF)

@ Hidden Cell
© Probabtistic Hidden Cell

This leads tO an increaSing numbers @ spiking Hidden Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
-]] o o o [

@ outputcel 4 ...
of approaches, type of neurons, R B o2

type of connections... Py —

© vemoryceu AutoEncoder (AE) Variational AE (VAE) Dencising AE (DAE) Sparse AE (SAE)

. Different Memory Cell

Kernel

Several are dedicated to a particular —
goal, for instance:
e Recurrent Neural Network

(RNN) are often used to manage
sequence prediction problems

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

o YANRGANNY/
o e
o AWZa\w/Zaa\\

Deep Convolutional Network (DCN) Deconvolutional Netwaork (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
(text, language...) Y o oo e
e Convolutional Neural Network 5 e ot
2 P § Py Py
(CNN) are mainly used to process 3 0o ST

images

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

This course only focused on the | ¢ @ @ @

. . []
Classlcal and Sl I I l ple One : Multl Deep Residual Network (DRN) Kohanen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

Layer Perceptron (MLP) Sestoetessonzessontenzed % % %

The Asimov Institute — The Neural Network Zoo 132

ST NS e
TAYAYAYAYRY

3 (3

WAV

new in ' :

—

Two main improvements ease the performances of ANN:

e The computer performances (GPU increasing performances) enable the

increasing of complexity (layers) of artificial neural networks
28.2

22 Iayers 19 Iayers

357 I

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

e The amount of data available is strongly increasing (more captors, Internet,
[oT, connected devises...) => more cases to learn by the ANN

e New algorithms and approaches

133

- Whattodo withW

MLP are commonly selected to solve classical data problems:

e Regression problems when the goal is to find an approximation of a
function (not known or too costly to evaluate) represented by a dataset

1000

600
|

0 200
I

0 5 10 15 20

e (lassification problems when the goal is to identify to which group a new
observation belongs to (2 classes or more...). The separator can be linear or
not (=> Effect on the complexity of the MLP)

134

ng of an artitici

~

a; . Neuron;
Wj R X N i /
A
Input Output :
links links f

/

Input
function

Activation Output

a,=g(b; + Z Ay . W ;)
Where:

a; activation value of neuron j
w;; weight on the link from neuron j to neuron i
Z; weighted sum of inputs to neuron i + the bias
9i activation function of neuron i

b; bias of neuron i
135

~_ Activation functﬁt\/

Several activation functions are available regarding what is the purpose of

the ANN and the type of data handled.

u = max(0; x)

Linear function
Dedicated to regression

No transformation

ReLU (Rectified Linear Units)
Filter negative values

Use in Deep Learning (easy to
calculate (evaluation and
derivation)

~_ Activation functlo\m\/

~

Sigmoid
06 1 . . .
e Move the activation in [o, 1] range
+ e e
Use for Classification
Hyperbolic Tangent
o e** —1 Move the activation in [-1, 1] range
' L e e S :
o e’*+1 Use for Classification

7

- Forward Pass \/

The process followed by an ANN to evaluate its outputs regarding a case is
called the forward pass. Consider this simple network (sigmoid and bias
=1). From the inputs whose outputs are known, for each neuron :

Calculate the weighted
sum of their inputs

Add the bias

Apply the activation
function and generate
the output value

Complete the layer and
go to next one

1

(1x054+0+0) +1
e

= 0.82

Forward Pass

/‘
~Loss-function - Definition- —

The loss function (L(0) = f(Y;Y;)) models the error due to the
configuration 8 = (W, b) of the ANN (weights, biases).

The goal is then to find the best configuration minimizing the loss
function: Hbest = Argmin@ (f(Ylearning (9), Ylearning))

Examples of loss functions:
e Mean Square Method (MSM): MSM = %.Zi,j(yij 0) —yi))*

e Mean Absolute Error (MAE): MAE = %.Zi,jly;@) = yijl

e Cross Entropy Loss (for binary classifications):

1 s e
CEL = .) ~ij108(y5®) + (1 — ¥;;)log(1 - y;®)
i,j

139

To find the best configuration of the network, the goal is to find the

minimum of the loss function in the domain space of all parameters (6 =

Since no mathematical expression are available, numerical approaches are

mandatory.

Starting here

li.
/1“\\;
: \ -,”l,\
LTI et W,
b
I

4 VI“

LoOss

We want to get

to here

1
1
1
!
i
‘.
2\
oX

Figure from https://www.pyimagesearch.com

140

PP rning - FromW

The goal of the learning phase is to minimize the loss function (due to all
weights and biases of the network) by using a gradient approach:

0= 0—1A4L(0)

Where A is the learning rate. Take care how this parameter is quantified!

1.00
\

1.00

0.75 0.75 A

0.50 - 0.50 -
0.00 0.00
-0.25 - -0.25

—0.50 1

-1.00 \ -1.00

-1.00 —0?75 —0?50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 —0?75 —0150 —0t25 0.'00 0.l25 0.Z’>O 0.l75 1.00

—0.50 A

-0.75 —0.75 A

A too low : long time to converge A too big : chaotic exploration with
and be trapped in local optimum big risk of divergence!

It is possible to define dynamic 4, decreasing during the convergence. To
avoid getting stuck by a local minimum, a momentum can be defined 141

- Loss-tunction evoluti

-

Plotting the evolution of the loss during the training is a good way to
adjust its main parameter : the learning rate A.

Too high learning rate
(divergence)

Low learning rate
(time consuming)

loss function

High learning rate

(trapped in a local minimum)

Adequate learning rate

[
»

Number of iteration (epoch)

142

Gradient Descent - Strategiesto cam

Three main strategies are used to calculate the loss gradient AL(@) and so
to train the system:

e Batch Gradient Descent: the gradient is calculate on the whole set of
database. This approach is, of course very long, but it increases the
convergence

e Stochastic Gradient Descent: the gradient is calculate on each input of
the database. This increases the speed of the (weights, biases) updates but
risks to face instabilities

e Mini-Batch Gradient Descent: batches are generated randomly from the
database to mix the two previous strategies: all the data of a batch are used
to evaluate the gradient which is used to update the ANN’s parameters.

143

~ Backpropagation - Ltast L

-

For the k' weight in the last layer, with the i case, the gradient is
defined:

de Ly]
Sio [n] : %) St
k
OL; Effect of the considered weight on the input
S bIEcn] - S5Vik Y Effect of the input of the neuron on its output

Effect of the considered neuron on the global loss

Example with the MSM + Sigmoid:

SL; g f - -
S — (Yik o yl'k)-(yik.(] -yik))'al[cn]

k

Then the new weight is calculated:

v oy —~ .
ngn]= ngn]' A Vi — Yie)-Vir-(1 -yik)).a,[(n]

144

/Bag%propagatioW

For the hidden layers (I # n), the weight have more way to impact the
gradient. This equation gives the way to modify all weights:

wilowlh. 3. el qlt=1

Gt
With a][o] is the x;;(the j™ element of the i*" case)

1]. : : .
Where ej[lis defined in a recursive way:

[= ’ — [[
-1 = g (al1), 2wl of

Sl

jn] = (yij — Yij)-g,(a][n])

145

- Back-propagation -

-

1 P
Considering the total error L is calculated with: L = > Z(yi i) — i)

Learning rate A = 0.1

errors !

L=0.39

< Back Propagation

L]

New_wl[rll]= Wl[?]— A. 6/;,c —
e R -1

0l A

New_w1[7I]= 0.5-0.1%

(0.9—0.7) *(0.9%(1 -0.9)) * 0.82

New_wl[?]= 0.499

New_wl[rzl]= 0.5-0.1* (0.86 —
0) *(0.86*(1 - 0.86)) * 0.82

New_wl[rzl]= 0.491

146

- Back-propagation -

-

1 P
Considering the total error L is calculated with: L = > Z(yi i) — i)

Learning rate A = 0.1

Lo RN

errors !

L=0.39

< Back Propagation

L,j

New_wl[?_l]= W1[r1L—1]_ A. e([,l]. a([)o]

1 ! =1 l l
e([) I = g (ag]).ZkWIEj]. e,[{]

= (0.82 (1 -0.82 e
e e .)).kakj.ek

Ore ,[Cl] were already calculated on the
previous step:

egl]= (0.9-0.7)*0.9*(1-0.9) = 0.018
e{l]= (0.86-0)*0.86*(1-0.86)= 0.103

601 = 0.148.(0.018%0.5+0.103*0.5) =
0.009

New_w/" M= 0.5- 0.1 0.009 * 1 =
0.499 147

/BBQ‘%propagatioW

~

After applying the backpropagation, we can see the effect of these new
weights on the loss function. The same work must be done on the biases.

Forward Pass

When the feed forward was
applied on the network...

Evaluate the new weights
and biases through back
propagation

Redo the feed forward on
this new configuration and
assess the new loss function

and continue until
reaching the convergence or
the stopping criteria...

148

Overfitting happens when the loss function is good (very low) on the
learning set, but is not able to generalize its predictions to additional or

unseen examples.

This problem, in regression purpose, is very close to polynomial
approximation issues (selection of the right polynomial degree).

Regression

Classification

Underfitting Overfitting .

/‘
~Overfitting - Solutions—— —

To avoid the overfitting situation, two main solutions are used:

Early Stopping: Among the 3
dataset, some are kept in a
validation set that is not used by
the ANN for its learning phase.
The loss function is calculated
on both train and validation sets.

loss function

. . = Training se
If after several iterations the loss e :
” ¥ ’ . ——— rl in
function of validation set didn’t S l z
improve, stop the training. Number of iteration

Dropout: To avoid having neurons specializing on a particular
example, the dropout approach randomly switch off some
neurons during the training.

150

ow to spli

To train an ANN, to test it and to avoid it from over-training, three pack of
points are required:

Training set Validation set Test set

Where:

e The training set is used to train the ANN (for the back propagation
purpose)

e The validation set, which is composed of unseen cases, is used to check
during the training if the system is facing over-fitting or over-training
issues

e The test set is used when the training is complete to verify the
performances of the trained ANN. Try to have a representative set for the
final validation (points well distributed in the domain)

e The distributions between these sets are generally following these rates:
60% / 20% / 20%

151

Restart with the training set—p»

Reset error

Is the stop criteria validated ?

Early stopping ?

Initialisation of the weights
and biases

Feed forward on the training data 3 g

Evaluation of the error

Nofyet

=> Next trpining step

Propagate ?

Generate weights and biases of

output layer

By back propagation, generate
weights and biases of hidden

Training session

completed ?

Next
training
step

152

—

0

e Vlachine tearning-

ap
®)
)
)

\

P -
You-ano

You have to take a lot of decisions to build and improve the ANN meeting
your expectations and the type of data you want to process:

s1ajawrered 1adAy
3 sIdjWRIR]
Jo uonda[Rs

uonedynuaprI eje(q

uond3s 13 Suruesp ereq

Available o) ANN
data Algorithm

training

improvements

Error analysis

153

~ Exercice : - Asimplec

Design and implement in Python (without any ANN oriented lib) a

simple perceptron (no hidden layer) being able to make classification of a
set of points.

100 -

20 -

o] & ‘3 l”.-r -r"'a

0 100

The points are considered class_o if the sum or their coordinate is less
than 100 (in red), class_1 in the other case (in green). The range of the

analysed points is [0,100] for both x-axis and y-axis.
154

/
_Exercice : A simple classitication-Perceptron

Implement a simple Perceptron in python (with numpy and
matplotlib) meeting these requirements:

e 2 input neurons (x and y values)

e 1 output neuron. Since the goal is to make classification between two
classes, use a Boolean parameter.

e Activation function has to be selected among: sigmoid or hyperbolic
tangent. Prefer sigmoid with is easier to derivate.

e The initial weights and biases are generated randomly, as the dataset used
to train the system. Take a training set of 250 points.

e Don't forget to normalize the input data ! (use numpy mean and std)

After implementing your Perceptron validate it by:
e Plot in a graph the error of your ANN at each step of its learning phase

e Define the criteria to stop the training process (error less than an a
threshold, number of trainings performed...)

e Test the accuracy of your model with a set or randomly generated points in
the same range [0, 100] which doesn’t belong to the training set

155

PEXercice : structure of tre-programr

In order to guide your work, you can follow these different steps/goals:
- Generate of the training set (use random package)
- Define the variables needed to describe the parameters of the ANN
- Define the forward propagation function
- Define the loss function

- Define the back propagation function (you can choose the type of gradient
descent)

- Include all this stuff into a loop to generate several updates of the ANN
parameters

156

- Exercice: Tips aW

With the sigmoid function and with the MSM, the updating of weights
and biases in a perceptron (no hidden layer) follow this mathematical

relation:
wi = wi — learning_rate * (prediction_error) * g'(z). xi
bi = bi — learning_rate * (prediction_error) * g'(z).1

As soon as your model is correct, try to train your perceptron on a new
case, where the boundary is not linear (for instance x? + y? < 1). Analyse
the efficiency of the perceptron in this new case.

1.00 ...::o.... .*.'.. i ’Q ‘:
0.75 !.'.:.:.:?ﬂ;’ ;. " %
0.50 ';’.:\.‘f ‘g , .“.
0.25{ M “ e *‘ &,
‘ﬁ '...{. 1“..0 'ﬂ

s
oo ©°*8 .'&‘° o. 0o .‘.”°

P R W N"'q .o ° .o...O
SRR
P SR I

~0.75 1 "‘t ‘i “ .? \{;x)\&....

—1.00 ~

—1 00 —0 75 —0 50 —D 25 0. 00 0. 25 0. 50 0. 75 I 00 157

ptTSetul PythonW

Several Python packages are available to design ANN and train them.
Among them, : : and (with can be
seen as an interface to ease the definition of an ANN) are very powerful
(direct use of the computing power of GPU Graphic Power Unit) and easy

to handle.

You can find several resources on Internet:

o Installation of Keras with Anaconda framework: and on SAVOIR
e Several examples of the definition and implementation of MLP (called
sequential models in keras): (keras website), and

Antonio Gulli, Sujit Pal

Deep Learning
with Keras Several books are available (mainly in English)

explaining how to use these Python libs.

Packt>

158

https://www.tensorflow.org/
https://scikit-learn.org/stable/
http://www.deeplearning.net/software/theano/
https://keras.io/
https://towardsdatascience.com/installing-keras-tensorflow-using-anaconda-for-machine-learning-44ab28ff39cb
https://keras.io/getting-started/sequential-model-guide/
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://machinelearningmastery.com/build-multi-layer-perceptron-neural-network-models-keras/

S

€ Ol a Keld

The structure of an ANN designed in Keras follow this structure:

Import all the mandatory packages

Load and process the dataset (normalize + split into
the 3 sets (training, validation and test))

Define the structure of the ANN (layers and their
characteristics)

Run the learning phase (after defining the loss function,
and the optimisation behaviour)

Consult the results and the ANN final configuration
(weights and biases) and save the configuration

Use the ANN final configuration
to new cases

159

- Packages import\/

~

As usual in python, it is necessary to import a set of packages needed to define,
train and use an artificial neural network:

/) Package to define a MLP

from tensorflow.keras

from tensorflow.keras.

from tensorflow.keras

from tensorflow.keras.

Package to
structure a MLP

.models import Sequential

layers import Dense

.optimizers import SGD

utils import plot model

\) Package to plot and represent

the network

Package to define the
minimisation
parameters of the
back-propagation

160

Strueturing the layer(s)— m——

As soon as the MLP is defined (Sequencial Neural Network), you can easily add
one by one its layers by describing their key parameters:

 its name

- the number of neurons allocated to the layer (first input parameter, mandatory)

- for the first layer (only), the number of input neurons (input_dim)

- the type of activation function (activation to select among: 'relu’, 'sigmoid’,
'linear’', 'tanh',..) => Only one activation function can be allocated to all
neurons of a layer

- the activation of bias or not (True or False)

Example:
my network = Sequential()
my network.add(Dense(20, input dim
my network.add(Dense(4, activation

10, activation = 'relu’))
'sigmoid'))

It's important to check that the model is consistent, for instance that
input_dim is equal to the dimension of training data, or in the case of
classification that the final layer has an activation function compatible
(sigmoid, tanh...)

161

PeTieexthe structure —— B

Several methods are available to access to the structure of the network:

Summary (): generates the structure and print it on the debug console

In [71]: ANN.summary()
Model: "sequential_1@"

Layer (type) Output Shape

dense_17 (Dense) (None, 2)

dense_18 (Dense) (None, 1)

Total params: 9
Trainable params: 9
Non-trainable params: @

If you want to have a graphical feedbacks of the structure of your ANN, it is possible
to generate an image of it. To do so, import plot_model from
tensorflow.keras.utils.

plot model(my network, to file='model plot.png', show shapes=True)

mput: | [(?, 2)]

output: | [(7, 2)]

denze 19 mput: InputLayer

'

denze 19: Dense

myput (7, 2)

output: | (7, 2)

mput (7, 2)

dense 20: Denge

output: | (7, 1) it

/Ba%k‘propagation\p)“amﬁﬁe%eﬁ/

As soon as the structure defined, it is necessary to define the learning parameters :

* The selection of the gradient parameters (learning rate and the momentum),
describing the optimisation parameters:

Op_params = SGD(learning rate, momentum), both are float numbers

e The selection of the loss function among the ones available
- Forregression: 'mean_squared_error', 'mean_absolute_error’

« For classification: 'binary_ crossentropy’ (2 classes), 'categorical crossentropy’
(more than 2 classes)

e The choice of the performance indicator (analysis of the accuracy of the ANN)
among the ones available ('accuracy' and 'binary_accuracy")

Example:
op_params = SGD(©.1 , 0.9)

my network.compile(loss='binary crossentropy', optimizer= op_params,
metrics=["'binary accuracy'])

Learning definitionand-running—

The network is now ready to be trained. To do so, the next step aims at defining
and running the training. The method to use is fit, which is waiting for a set of
input parameters:

The input dataset (as a numpy or a python list of list) - mandatory

The output dataset (same constraint than for the input) - mandatory
The epochs (integer the number of iteration) - mandatory - mandatory
The batch_size (integer defining the size of the mini-batch)

The validation_split, float number representing the part of the dataset to use for the
validation of the network. It is possible to give through the input parameter
validation_inputs the value to consider as validation set.

Verbose (0,1,2) to define the type of feedbacks given during the training (from
nothing to complete)

Example:
my network.fit(Inputs, Outputs, epochs = 1500, batch size = 250)

164

Tratning run - ///////

During the training, if verbose parameter is defined to 2, you can see the evolution
of the loss function and the accuracy function if you selected or defined them.

Current epoch (iteration of the
training phase)

Epoch 394/14586

809/809 [©s 6us/sample loss:
Epoch 395/1458

809/809 [©s 5Sus/sample loss:
Epoch 396/1458

809/869 [©s 5us/sample loss:
Epoch 397/1456

809/809 [©s Sus/sample loss:
Epoch 398/1458

809/809 [©s 5Sus/sample loss:
Epoch 399/1458

809/869 [©s 5us/sample loss:
Epoch 466/1456

809/809 [©s 6us/sample loss:
Epoch 401/1458

809/809 [©s 6us/sample - loss:
Epoch 482/1458

308/809 [ETA: ©s - loss/, ©.7323

Evaluation of the loss

Evolution of the function on the epoch

batch processing
165

_Training - Evolution of toss-and-aceuracy 1/2

It is possible to have access to the evolution of the loss (of the training and
validation sets) and metrics (accuracy selected on the parameters of the fit
function) after the training of a network, since Keras stores all this data in an
history.

For example:

my history = my_network.fit(Inputs, Outputs, epochs = 1500, batch size =
250)

To access this information, store into a variable the result of the fit function. From
this variable you can have access to this history. Before requesting any data, you
can firstly check the ones available by using the keys() parameter of the history.

For example:
print(my history.history.keys())

166

- Training - Evolution | O < 2

As soon as checked the data available in the history, you can access or plot them.
As an example, this code will plot the evolution of the accuracy and loss function
of the training defined on the previous slide:

plt.figure("Evolution of loss and accuracy during the training")
plt.plot(my history.history['loss'], label="loss")

plt.plot(my history.history['binary accuracy'], label="accuracy")
plt.xlabel('epoch')

plt.legend(['loss', 'accuracy'], loc='right')

. Evolution of loss and accuracy during the training - m} X

AE>PQELDB

1.0 4

0.8

0.6 1 — loss
accuracy

0.4

0.2

T T T T T T
0 50 100 150 200 250

epoch 167

/‘
“Use-atrained network—— .

As soon as the network is trained and its accuracy is considered satisfactory, it is
possible to use it on new cases to predict their output or to classify them.

The instructions available in keras depends on the type of ANN:

- Forregression problems: the method predict takes as inputs a batch of cases/points

and generates the output vector (as a numpy matrix or vector) regarding the current
configuration of the network

- For classification problems: the method predict_classes takes as inputs a batch of

cases/points and generates the output vector regarding the current configuration of
the network

Example:
my network.predict(Inputs to test)

168

\

R S o= o, ——

In classification problems, it is possible to calculate the confusion matrix
that synthetises the accuracy (good prediction) of the classifier and
underlining the main risks :

v" Alpha: predicting False something that is True
v" Beta: predicting as True something that is False

Prediction

True False

True label

False | True

169

/Cl,a%ﬁﬁcation — |

on

To easily handle the confusion matrix, the sci-kit learn package is relevant
and fully compatible with keras trained neural networks.

from sklearn.metrics import confusion_matrix
predictions = ANN.predict classes(Inputs) [[44375 6]

: ; [@ 88750]]
c = confusion matrix(y true, y pred)

REsAg gk e ety

170

Access to the parameters of the A

It is possible to have a look at the parameters (weights and bias) of each neuron of
the network, to check the relative importance of a neuron (input or intermediate
one). To do so, use the method weights.

In the case of a MLP composed by 1 hidden layer of 2 neurons and one output
neuron, the result has this shape:

In [78]: ANN.weights

[<tf.variable 'dense 21/kernel:@' shape=(2, 2) dtype=float32, numpy=

array([[1.6364022 , 7.908386 |,
[0.50241685, 7.989181]], dtype=float32)>,

<tf.Variable 'dense_21/bias:€' shape=(2,) dtype=float32, numpy=array([-1.8894496, -8.829093], |dtype=-Float32)>,
<tf.Variable 'dense_22/kerne.:8' shape=(2, 1) dtype=float32, numpy=
array([[©.5413507],
[13.857591]], dtype:float32)>,
<tf.Variable 'dense_22/bias:@' shape=(1,) dtype=float32, numpy=arra) ([-6.8311167], dtype=float32)>]

Input weights of each neuron
composing the first hidden layer

Biases of each neuron composing
the first hidden layer

171

- Analyse features im

Since the analysis of the weights is quite complicate, even more on

complex model, several tools are available to analyse the importance of
input neurons on the predictions.

model_d ferri
model_d_aust
model _GJC
Jet4d

Thickness

model_TPyrol

Pmax]5

Width

S H A P model TPyro3

It can be relevant to compare this analysis with statistical analysis of the

input data before training to detect some biases due to the network
structure.

172

https://shap-lrjball.readthedocs.io/en/latest/generated/shap.summary_plot.html?highlight=summary_plot

~Analyse features im -

-

Code example:

Neural network developped in
tensorflow/keras packages

import shap as sh \ Set. of in.put data (about 50/100
/ points) in numpy format

explainer = sh.DeepExplainer(network, shap _data)

shap_values = explainer.shap values(other_input data)

eh anTEyse) Set of input data (about 200
points) in numpy format different

sh.summary plot(shap values, headers) ; :
from the previous set of points

List of the labels (column names) of /

the tested parameters (input
parameters)

173

~ Saveatrained ne

As soon as an ANN is trained and considered accurate, it is fortunately not
necessary to re-train at each use. It is then possible to save and load a network
already trained and configured.

First of all, import the loading functions to your python program:
from tensorflow.keras.models import load model

From now, you can easily:
e Save your trained model with the function save(filename)
e Load your trained model with the function 1oad_model (filename)

Example:

my network.save("My network.keras")

my new_network = load model("My network.keras")
my new_network.summary()

174

~ Exercices R

By using keras + numpy packages, please complete these exercises:
e Design a simple perceptron where the separator is linear

» Design a perceptron where the separator is not linear (see the previous exercise with
the separator is a circle)

e From this perceptron, add hidden layers to increase the accuracy of this classification
neural network

100 4 1.00 § :..:. :"E 0...:‘ :#va o‘: :EF.&.

| ANRE Qg Dol
0.25 ! B
oo sl $1F LGN
0251 % % :'53.'.1.0:. 0‘.;.0 ..{ »&o-

—-0.504{ ®° 8, b. o ...
o] f:g ':'.:':o:""' S 'iq.,-.

o
;‘t 'is -.#"'E;x;"}“s

]00 71 00 075 050 025 000 025 050 0?5 100

80 4

B0

40 4

20 1

01 ~1.00 1

For these 3 cases, check the structure of the design network, see the value of the weights and
biases and save them.

175

/‘
_To gofurther... documents andvideos™

Videos on YouTube:

e 3blueibrown propose an interesting an well animated explanation of the working of a
neural network for hand writing recognition):

e Open course proposed by MIT: See more particularly videos 12a and 12b in this
playlist:

Blogs and websites:
« Keras webpage:
» Complete guide to ANN (not only MLP):
« Blog about ANN and deep learning:
« Another blog about machine and deep learning:
« C(lear explanation of backpropagation on a example:
« Several datasets proposed:

Several books are available in the library (or online see ENI edition)!

176

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=TjZBTDzGeGg
https://faroit.com/keras-docs/1.0.0/
https://missinglink.ai/guides/neural-network-concepts/complete-guide-artificial-neural-networks/
https://www.machinecurve.com/index.php/category/deep-learning/
https://machinelearningmastery.com/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://archive.ics.uci.edu/ml/datasets/

