
Constraints Satisfaction Problem

As opposed to constructive approaches which explore the solution domain until
finding one or several solutions, one other way to find solution can be used : the
domain reduction.

In this case constraints that the solution must meet are managed. Not the way to
find a solution…

Constructive approach Domain reduction

53

Constraints Satisfaction Problem

An example to illustrate this constraint based approach. The aim is to
design this simple mechanical system.

4 design parameters can be quantify by designers: t, wAB, L, W

The aim is to find the possible values to this parameters

E

B
D

L

C

A

L/3

W

E
w

t

Cross section E-E

60°

54

Constraints Satisfaction Problem

- The compressive force FAB apply to the beam (AB) is

limited by the buckling force limit Fb.

LLtLgwW

W
W

WW
WF

ABABABAB

CDABCD
AB

9

34
 and with

22

3

3232

9
22









































2

3

2 64

²9²

L

tEw

L

EI
F AB

AB

AB
b




- The maximum bending stress b apply to the beam (CD) is limited by the

permissive bending r (225 MPa for steal).

E

B
D

L

C

A

L/3

W

E
w

t

Cross section E-E

60°

Bending torque
025.0

th wi

6
2

2

















ABCD

CDCD

CD

CD

b

ww

tLgwW

tw

W
WL





2 mechanical constraints to meet:

55

Constraints Satisfaction Problem

Eligible Domains

 

 

 

 






















































































































1$,$min

025.0
9

34
1

025.0
2

1
025.0

39

8
1

2

1
3

32

²3

$

025.0
6

1
2

025.0
$

22

2

3

2

F

AB

ABAB

AB

F

AB

ABr

sss

wgtLM

wgtLWwgtLW

L

tEw

s

wgtLWL

tw
s















Pa

smg

mkg

PaE

r

6

2

3

9

10225

81.9

7830

10207













Design Parameters: X=(t, wAB, L, W)
 

 
 
 0000215000,

43,

0.130.04,

0.100.04,









W

L

w

t

AB

Performance Variables: Y=(M, s) Specification Constraints

3200,5.1  Ms

Performance Constraints

Safety index

System
Weight

56

Constraints Satisfaction Programming

Stages  Lwt AB ,, projection  MWL ,, projection  sMW ,, projection Hull of design space

1

 
 

 
 
 

 567.21,

9.30062077.9,

0000215000,

43,

0.130.0654,

0.10.0621,













s

M

W

L

w

t

AB

2

3200M

 
 

 
 
 

 664.11,

32002081.5,

0000215000,

8.33,

0.130.0654,

0.10.0621,













s

M

W

L

w

t

AB

3

5.1s

 
 

 
 
 
 664.11.5,

32002926.5,

1663815000,

150.33,

0.10260.0859,

0.10.0887,













s

M

W

L

w

t

AB

4

14.3L

 
 

 
 
 

 505.11.5,

32003190.6,

1505115000,

145.33.14,

0.08940.0889,

0.10.0996,













s

M

W

L

w

t

AB

Design problem «
very constrained »

Design problem
« not too

constrained »

[Yannou]
57

Constraints Satisfaction Problem

Constraints Satisfaction Problem gathers several technical solutions (mainly and
historically from AI) to solve mathematics problems by finding solutions to variables
constrained to each other by mathematical relationships.
Find solutions to this kind of problem can be:

 Find all candidate solutions: this is enumeration
 Find the best one: this is optimization

[Montanari 74] was the first to define a CSP as:
 𝐷 = {𝐷1, 𝐷2…𝐷𝑛} a sequence of domains
 𝑋 = {𝑋1, 𝑋2…𝑋𝑛} a sequence composed by variables which are related to the

domains previously defined: ∀𝑖, 𝑋𝑖∈ 𝐷𝑖
 𝐶 = 𝐶1, 𝐶2…𝑋𝑚 a sequence of constraints

 𝑅 = {𝑅1, 𝑅2…𝑅𝑚} a sequence of relationships, where a each constraint 𝐷𝑗 is
associated a relationship 𝑅𝑗

 A state of a CSP problem is composed by value assignment to some or all variables:

{Xi=vi,Xn=v1,…}.

 An assignment which do not infringe any constraint is called legal or consistent

 An assignment is called complete if it concerns all variables

 A solution to a CSP problem is complete and consistent assignment

58

Constraints - Type

The constraints can be:

 Numerical : 𝑦 = 𝑓 𝑥 , 𝑥 = 𝑦2 + 𝑧3

𝑦 > 𝑓 𝑥 , 𝑥 < 𝑦2 − 3𝑧

 Boolean: (𝑥⋀ത𝑦)(𝑦⋀ ҧ𝑧)=True

 Typing: 𝑋 ∈ ℕ …𝑌 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑙𝑎𝑠𝑠 𝐴𝑥𝑖𝑎𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒

 Sets: 𝑥⋂𝑦 ⋃𝑧 = {𝑎, 𝑏, 𝑐, 𝑑}

 Symbols (all can be formatted with the If Then Else structure):

 Disjunctive numerical: 𝑧 ∈ {𝑎, 𝑏, 𝑐, 𝑑}

 Complex digital charts:

 Numerical/Symbolic assignment charts:

 Formal (If…Then…Else)

 Algorithms

 Simulations…

59

CSP - Discrete Example

A famous example used to illustrate the CSP is the coloring of the Australian
states problem:

The aim of this problem is to color each state in a different color from its neighbor.
The colors are limited to three: blue, red and green.

 The variables are: V = { WA, NT, Q, NSW, V, SA, T }

 The domain of each variable is one composed by the three color: {R, G, B}

 Constraints: Two neighboring states must have different colors: WA≠ NT … NT≠ Q

60

CSP - Generate and Test

The first way to perform this solution research is to generate all solutions and to
verify if each solution is consistent. This way is:

 Easy to perform since it only needs to define tree structure and for each variable
value, to add nodes.

 It becomes totally useless when the combinatory is huge => Process time too long, or
impossible.

In the case of the Australian coloring, the number of branches are: 36 = 729

This solution cannot be use in this context of manufacturing process plan
selection which is highly combinatorial. An other solution, which prevent the
calculation of inconsistent branches as soon as possible must be explore.

WA

NT

Q

NSW

SA

…

61

CSP - Test and Generate (Back Tracking)

This approach is based on several principles:

 Variable assignment is commutative:
The assignment order has no importance

So, WA=Red then NT=green is exactly the same then NT=green then WA=red

 Consequently only one variable can be considered at each node of
the research tree

 The algorithm aims to perform deep search by assigning only one
value for each variable

Tree exploration by backtracking strategy

62

CSP - Test and Generate (Back Tracking)

function BACKTRACKING-SEARCH(csp) return a solution or failure

return BACKTRACK({} , csp)

function BACKTRACK(assignment, csp) return a solution or failure

if assignment is complete then return assignment

var  SELECT-UNASSIGNED-VARIABLE(var, assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment then

add {var=value} to assignment

result  BACTRACK (assignment, csp)

if result  failure then return result

remove {var=value} and inferences from assignment

return failure

63

CSP - Test and Generate (Back Tracking)

Applied to the coloring problem, this algorithm works in this way:

The algorithm considers
at each stage only one
variable. All values
consistent are considered

At this stage, only one variable is
still considered. Its consistent
values are then selected: 2 new
CSP are created

This algorithm performs deep
analysis: It consider only one
branch before analyzing one other

64

CSP - Back Tracking - Improvements

Some improvements can be proposed to limit the exploration of the tree
(constraints verifications) and so the calculation time needed to find solution
space:

 By selecting intelligently the variable to manage (SELECT-UNASSIGNED-
VARIABLE)

 Take into consideration variables having the shortest domain

 Take into consideration variables in relationships with more constraints

65

CSP - Back Tracking - Improvements

 By ordering the value to give to each variable (ORDER-DOMAIN-VALUES)

 The aim is to select the less constraining value in order to prevent from limiting
the values available for the variables not yet valued

66

After Q=Green

After V=Blue

CSP - Back Tracking - Improvements

 By detecting an issue as soon as possible this idea is called forward-
checking:

 When a variable is assigned, the algorithm have to check the consistency of all
variables in relationships (constraint relations) with it.

 Pay attention to the fact that if the value is assigned to the variable called X, it
checks only the consistency with variables Y since there is a constraint linking
them. However, if Y is modified by this action, the algorithm do not take care of
the impacts of this modification (and so the other variables linked to Y) of Y!

Initials Domains

After WA=Red

67

CSP - Exercise

We want to use Back Tracking to solve this particular type of CSP. This
problem is a cryptarithmetic puzzle, a mathematical puzzle in which
each letter represents one digit (for example, if X=3, then XX=33).

The aim is to find the value of each letter. A digit is represented by only
one letter (If X=3, Y cannot be 3). And the first letter cannot be zero
(Given the value ZW, Z cannot be zero).

This exercise aims to solve this cryptarithmetic puzzle:

68

CSP - Exercise

69

Perform the modeling (as defined mathematically by Montanari) of this
CSP problem.

Deduce from this mathematical
modeling, the constraints network where
each variable and their relationships (the
constraints linking them) are drawn.

Considering an excerpt of the Australia
map coloring problem detailed during
the course (by only regarding WA, NT
and SA variables), this network is given
in next.

By using the improved Back Tracking algorithm (which improves the
selection of the variable to consider and its assignment), build the tree this
algorithm explores, with this new constraint: O=8. Identify the solutions of
this CSP.

WA
{R,G,B}

NT
{R,G,B}

SA
{R,G,B}

WANT

WASA

SANT

CSP - Go further ?!

To train yourself, you can try to solve these problems:

 The previous problem without the constraint which regards the
assignment of the variable O (O=8). To minimize the depth of the
backtracking, remember that O is an even number!

 This other classic and famous cryptarithmetic problem:

74

S E N D

+ M O R E

M O N E Y

Several software are available to solve CSP (free or expensive):

 ECLIPSe (free): http://eclipseclp.org/index.html

 MiniZinc (free): http://www.minizinc.org/

 Python Constraint (free): http://labix.org/python-constraint

 Google or-Tool (free) : https://code.google.com/p/or-tools/

 IBM ILOG CP (expensive…): http://www.ibm.com/

 …

http://eclipseclp.org/index.html
http://www.minizinc.org/
http://labix.org/python-constraint
https://code.google.com/p/or-tools/
http://www.ibm.com/

Need more exercises ?

Try to solve these famous constraint satisfaction problems:

• Sudoku (give as an input the sudoku to solve)

• N queens problem

• One of the problems proposed in http://www.puzzlor.com/ website

• The CSP exercises of the previous final tests GTL S43b

• …

76

http://www.puzzlor.com/

What is MiniZinc?

MiniZinc is a free and open-source constraint modeling
language. It’s not a solver.

77

MiniZinc can be used to model constraint satisfaction and optimization
problems in a high-level, solver-independent way. Consequently you
only have to learn one programming language: it’s compatible and
understood by a wide range of solvers: from free solvers bundled with
MiniZinc to more costly solutions...

The software runs both on Windows (32 and 64bits), Linux (32 and
64bits) and MAC OS X. Its last version was update in September 2017.

To download this IDE: http://www.minizinc.org/index.html

http://www.minizinc.org/index.html

CSP - Reminder

As explained during the lecture, [Montanari 74] defined a CSP
mathematically as:

 𝑋 = 𝑋1, 𝑋2…𝑋𝑛 a sequence composed by variables which are related to
their domains : ∀𝑖, 𝑋𝑖∈ 𝐷𝑖

 𝐷 = {𝐷1, 𝐷2…𝐷𝑛} a sequence of domains (continuous or discrete)

 𝑅 = 𝑅1, 𝑅2…𝑅𝑚 a sequence of relationships, where a each constraint
𝐶𝑗 is associated a relationship 𝑅𝑗

 𝐶 = 𝐶1, 𝐶2…𝑋𝑚 a sequence of constraints

In MiniZinc IDE:

 Variables and their domains are defined in only one programming line

 Constraints and relationships are merged into only one programming line

78

How to define a Variable and its domain?

In Minizinc the syntax to define a variable is:

var <type or domain>: nameofvariable [=〈expression〉];

 the type can be int, float, bool (not string)

 the domain is expressed by putting upper and lower boundaries separated
by two points

Examples:

 var 1..9: T;

 var float: L;

Some parameters (that are not to consider in the solving process, such as
temporary parameters or constant) can be define in this way:

<type>: nameoftheparameter [=〈expression〉];

79

How to define a Constraint ?

To define a constraint in Minizinc, the syntax is:

constraint 〈Boolean expression〉

To express this Boolean relationships, the relational operators can be
used:

 Equal: = or == (if you prefer Python’s style )

 Not equal: !=

 Strictly less (or greater) than: < (or >)

 Less (or grater) than or equal to: <= (or >=)

80

Define the type of problem

Since MiniZinc is design to model both CSP and optimization problems,
you have to precise in which case your are with the instruction solve:

 solve satisfy; if you want to find a solution to a CSP problem (if you want
to see all solution, modify the MiniZinc preferences)

 solve maximize <Arithmetic expression to maximize>;

 solve minimize < Arithmetic expression to minimize>;

This expression can use any type of arithmetic operators such as:
 For integer: addition (+), subtraction (-), multiplication (*), integer

division (div) and integer modulus (mod)

 For float: addition (+), subtraction (-), multiplication (*) and division (/),
conversion of int to float (Int2float), absolute value (abs), square root(sqrt),
natural logarithm (ln), logarithm base 2 (log2),exponentiation of e(exp),
sinus (sin), cosinus (cos), tangent (tan) and power (pow)

 For Boolean: and (/\), or (\/), only-if (<-), implies (->), if-and-only-if (<->)
and negation (not) => These elements can be useful to combine
constraints!

81

How to display the results ?

To ease the reading of the resulting complete assignment of each decision
variable, you can use the following instruction:

output[<list of strings expressions (separate by a comma)>];

If the data you want to show is not a string, use the function show() to
perform the type conversion.

To structure the results, you can use particular string expression:

 “\n” to add a line break

 “\t” to add tabulation

82

Exercise #1 - Color

Solve the Australia coloring problem by using MiniZinc and print the
result.

Tip: Don’t use color domains as string expression, but as integer to ease
the definition of constraints and their variables.

83

Exercise #2 - Puzzle

Solve the cryptarithmetic puzzle we partially solved during the course:

Compare the computer time required to solve this problem by modifying the
way to model constraint: the one with remainders and the one without.

Tip: To add alldifferent(<list of variable separate by comma>) function,
you have to include this instruction to MiniZinc. To do so, add this
programming line to the head of your program:

include “alldifferent.mzn”;

To go further, solve SEND + MORE = MONEY cryptarithmetic problem.

85

Conditional expression

It is possible in MiniZinc to use conditional expression to differently apply
constraints or quantify parameters regarding a set of conditions.

This structure follows this syntax:

if <Boolean Expression> then <Expression> else <Expression> endif;

Two examples:

 int: r = if z==0 then 0 else z endif;

 constraint if z>0 then z<12 else true endif;

87

Arrays

It is possible to define arrays (matrix, lists…) in MiniZinc by using this
programming syntax:

array[<indexset1>,…,<indexsetn>] of [var] <type>: NameVariable;

Example of definition:

 array[1..10] of string: townsname;

 array[2,3] of var float: consumption;

Example of writing:

 consumption[1,2] = 1.2;

 consumption = [| 0.1,0.2,0.3,| 1.1,1.2,1.3 |];

 consumption = array2d(1..2, 1..3, [0.1,0.2,0.3,1.1,1.2,1.3])

88

row divider

Function transforming a list into an n-dimension array

Constraints on array

To apply constraints on all (or selected) elements of an array, use the
forall function:

forall ([<Expression> | <Generator> where <Boolean Expression>])

forall (<Generator> where <Boolean Expression>) (<Expression>)

Examples (they are similar):

 forall([a[j] != a[i] | i,j in 1..3 where i != j]);

 forall (i,j in 1..3 where i != j) (a[j] != a[i]);

forall function can be used to apply constrain on a set of elements or to
generate a list of values (to check the maximum value for instance).

89

Aggregation functions

In addition to forall instruction, several other aggregation functions are
available in MiniZinc. These functions give one output considering a set
of values (arrays, lists) given as inputs:

• For arithmetic values:

• sum() and product()

• min() and max()

• For Boolean values:

• forall(): Checks that every values is True

• exists(): Check that at least one value is True

The way to use these aggregation functions is the same than the one
explained in the previous slide.

90

Exercise #3 - Magic Square

Work to do: Design a Minizinc program able to generate a magic square
of any size (quantify by the user).

Tip: The Magic sum is defined mathematically as: n.(n²+1)/2. Try to solve
this problem with and after, without this magic sum equation.

91

A magic square is a n × n square grid filled with
distinct positive integers in the range 1 , 2 , . . . , n²
such that each cell contains a different integer and
the sum of the integers in each row, column and
diagonal is equal. This sum is called the magic
constant or magic sum of the magic square.

Exercise #4 - Best burger ever ? 1/2

As the owner of a fast food restaurant with declining sales, your
customers are looking for something new and exciting on the menu. Your
market research indicates that they want a burger that is loaded with
everything as long as it meets certain health requirements. Money is no
object to them.

The ingredient list in the table (next slide) shows what is available to
include on the burger. You must include at least one of each item and no
more than five of each item. You must use whole items (for example, no
half servings of cheese). The final burger must contain less than 3000 mg
of sodium, less than 150 grams of fat, and less than 3000 calories.

To maintain certain taste quality standards you’ll need to keep the
servings of ketchup and lettuce the same. Also, you’ll need to keep the
servings of pickles and tomatoes the same.

Question: What is the most expensive burger you can make?

93

Exercise #4 - Best burger ever ? 2/2

94

Item
Sodium

(mg)
Fat
(g)

Calories
Cost

(cents)

Beef Patty 50 17 220 25

Bun 330 9 260 15

Cheese 310 6 70 10

Onions 1 2 10 9

Pickles 260 0 5 3

Lettuce 3 0 4 4

Ketchup 160 0 20 2

Tomato 3 0 9 4

