
Comment améliorer votre production

via les techniques de Machine

Learning?

Data science pour la performance

des systèmes industriels

?
Jean-Yves DANTAN
Lazhar HOMRI
Wahb ZOUHRI
Alain ETIENNE

Contenu

A quoi ça sert ?

Pourquoi et comment déployer des techniques d’IA ?
Comment exploiter les résultats ?

Comment ça marche ?

avec des applications

✓ Finalités des techniques de machine learning

✓ Techniques d’association: ACP,…
✓ Techniques de clustering: K-

MEANS, KNN, …
✓ Techniques de classification:

Decision tree, Random Forest,
SVM, …

✓ Techniques de régression:
régression polynomiale, RFR, ANN,
…

avec des mises en œuvre

Introduction

3

Clustering
Regrouper un
ensemble d’objets
en fonction de leurs
caractéristiques.

Association
Découvrir des
relations entre
variables.

Classification
Prédire la catégorie
(classe) d’une
nouvelle
observation.

Régression
Trouver une fonction
qui modélise les
données.
Prédire

K-moyennes ACP Arbre de décision

Logistic regression

KNN, SVM

Réseaux de neurones

Réseaux de
neurones

1. Neural Network - Introduction

Few words about Machine Learning and this lecture

This training is a small introduction of ANN behaviour and the way to design and play
with simple ones. To design real solutions a lot of steps need to be mastered !

Neuron: From biological to artificial

6

We have about 100 billions neurons. Each is connected to about 100 000 others. How
does it work ?

Nucleus

- From other neurons, through synapses, electrochemical
signals enter into the neuron

- The amount of power of these signals can reach a threshold,
which activates the neuron

- Generating a new signal to its neighbours

Neuron: From biological to artificial

7

The artificial neurone has the same structure and behaviour:

𝑥0

𝑥1

𝑥2

𝜎(f(𝑥𝑖 , 𝑤𝑖))

𝑤0

𝑤1

𝑤2

Zoo of neural networks

8

A lot of different structure of Neural Networks are available in the literature:

– From the simple and/or classical ones:

– To more complex ones:

Zoo of neural networks

9

This leads to an increasing numbers of
approaches, type of neurons, type of
connections…

Several are dedicated to a particular goal,
for instance:

– Recurrent Neural Network (RNN)
are often used to manage
sequence prediction problems
(text, language…)

– Convolutional Neural Network
(CNN) are mainly used to process
images

This course only focused on the classical
and simple one : Multi Layer Perceptron
(MLP)

The Asimov Institute – The Neural Network Zoo

What’s new in ANN since 1940?

10

Two main improvements ease the performances of ANN:

– The computer performances (GPU increasing performances) enable the
increasing of complexity (layers) of artificial neural networks

– The amount of data available is strongly increasing (more captors, Internet,
IoT, connected devises…) => more cases to learn by the ANN which is a
supervised learning approach

– New algorithms and approaches

What to do with an MLP ?

11

MLP are commonly selected to solve classical data problems:

 Classification problems when the goal is to identify to which group a new
observation belongs to (2 classes or more…). The separator can be linear or not
(=> Effect on the complexity of the MLP)

 Regression problems when the goal is to find an approximation of a function
(not known or too costly to evaluate) represented by a dataset

Mathematical modelling of an artificial neuron

12

Where:

activation value of neuron j

weight on the link from neuron j to neuron i

weighted sum of inputs to neuron i + the bias

activation function of neuron i

bias of neuron i

𝑎𝑗
𝑤𝑗,𝑖

Activation
Input

function
Output

෍ න 𝑎𝑖
Input
links

Output
links

𝒂𝒊 = 𝒈(𝒃𝒊 +෍𝒂𝒌 . 𝒘𝒌,𝒊)

𝑵𝒆𝒖𝒓𝒐𝒏𝒊

𝑎𝑗

𝑤𝑗,𝑖

𝑧𝑖
𝑔𝑖

𝑏𝑖

𝑏𝑖

Activation functions

13

Several activation functions are available regarding what is the purpose of the
ANN and the type of data handled.

Linear function

Dedicated to regression

No transformation

𝒖 = 𝒙

𝒖 = 𝐦𝐚𝐱(𝟎; 𝒙)

ReLU (Rectified Linear Units)

Filter negative values

Use in Deep Learning (easy to
calculate (evaluation and
derivation)

Activation functions

14

Sigmoïd

Move the activation in [0, 1] range

Use for Classification, not relevant for
hidden layers

𝒖 =
𝟏

𝟏 + 𝒆−𝒙

Hyperbolic Tangent

Move the activation in [-1, 1] range

Use for Classification, not relevant for
hidden layers

𝒖 =
𝒆𝟐𝒙 − 𝟏

𝒆𝟐𝒙 + 𝟏

Forward Pass

15

The process followed by an ANN to evaluate its outputs regarding a case is
called the forward pass. Consider this simple network (sigmoid and bias = 1).

Forward Pass

- Calculate the weighted
sum of their inputs

1

0

0.5

0.5

0

1

0.5

0.5

1

0.5

- Add the bias

- Apply the activation
function and generate
the output value

From the inputs whose outputs are known, for each neuron :

(1 ∗ 0.5 + 0 ∗ 0) + 1

- Complete the layer and
go to next one

1 + 𝑒−

0.7

0

1
= 𝟎. 𝟖𝟐

0.82 0.90

0.860.82

Error !

Loss function - Definition

16

The loss function (𝐋(𝜽) = 𝒇(෢𝒀𝒊, 𝒀𝒊)) models the error due to the
configuration 𝜃 = (𝑊, 𝑏) of the ANN (weights, biases).

The goal is then to find the best configuration minimizing the loss function:

𝜃𝑏𝑒𝑠𝑡 = 𝐴𝑟𝑔𝑚𝑖𝑛𝜃 (𝑓(෣𝑌𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝜃), 𝑌𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔))

Examples of loss functions:

– Mean Square Method (MSM): 𝑀𝑆𝑀 =
1

𝑛
. σ𝑖,𝑗(

෣𝑦𝑖𝑗 𝜃 − 𝑦𝑖𝑗)
2

– Mean Absolute Error (MAE): 𝑀𝐴𝐸 =
1

𝑛
. σ𝑖,𝑗

෣𝑦𝑖𝑗 𝜃 − 𝑦𝑖𝑗

– Cross Entropy Loss (for binary classifications):

𝐶𝐸𝐿 =
1

𝑛
.෍

𝑖,𝑗

−𝑦𝑖𝑗 log ෣𝑦𝑖𝑗 𝜃 + 1 − 𝑦𝑖𝑗 log(1 − ෣𝑦𝑖𝑗 𝜃)

Loss function - Optimization of the ANN

17Figure from https://www.pyimagesearch.com

To find the best configuration of the network, the goal is to find the minimum
of the loss function in the domain space of all parameters (𝜃 = (𝑊, 𝑏)).

Since no mathematical expression are available, numerical approaches are
mandatory (gradient descent algorithms).

https://realpython.com/gradient-descent-algorithm-python/

Learning - From prediction errors

18

The goal of the learning phase is to minimize the loss function (due to all
weights and biases of the network) by using a gradient approach:

𝜽 = 𝜽 − 𝝀. 𝜟𝑳(𝜽)

Where 𝜆 is the learning rate. Take care how this parameter is quantified!

𝜆 too low : long time to converge
and be trapped in local optimum

𝜆 too big : chaotic exploration with
big risk of divergence!

It is possible to define dynamic 𝜆, decreasing during the convergence. To avoid
getting stuck by a local minimum, a momentum can be defined

Evolution of a simple network - Example

19

In the graph below, the evolution of the quantification of the characteristics
of a very simple network (2 weights and one bias) is proposed. The colour
models the loss function (the darker is the better).

Loss function evolutions

20

Plotting the evolution of the loss during the training is a good way to adjust its
main parameter : the learning rate 𝜆.

lo
ss

 f
u

n
ct

io
n

Number of iteration (epoch)

Too high learning rate
(divergence)

Low learning rate
(time consuming)

High learning rate
(trapped in a local minimum)

Adequate learning rate

Gradient Descent - Strategies to calculate it

21

Three main strategies are used to calculate the loss gradient 𝜟𝑳(𝜽) and so to
train/correct the system:

– Batch Gradient Descent: the gradient is calculate on the whole set of
database. This approach is, of course very long, but it increases the
convergence

– Stochastic Gradient Descent: the gradient is calculate on each input of
the database. This increases the speed of the (weights, biases)
updates but risks to face instabilities

– Mini-Batch Gradient Descent: batches are generated randomly from
the database to mix the two previous strategies: all the data of a batch
are used to evaluate the gradient which is used to update the ANN’s
parameters.

Back propagation - Last Layer

22

For the kth weight in the last layer, with the ith case, the gradient is defined:

𝛿𝐿𝑖

𝛿𝑤𝑘
[𝑛]

=
𝛿𝐿𝑖
෣𝛿𝑦𝑖𝑘

.
෣𝛿𝑦𝑖𝑘

𝛿𝑧𝑘
[𝑛]

.
𝛿𝑧𝑘

[𝑛]

𝛿𝑤𝑘
[𝑛]

𝛿𝐿𝑖

𝛿𝑏𝑘
[𝑛]

=
𝛿𝐿𝑖
෣𝛿𝑦𝑖𝑘

. 𝑔′ 𝑎𝑘
[𝑛]

Example with the MSM + Sigmoid:

𝛿𝐿𝑖

𝛿𝑤𝑘
[𝑛] = ෢(𝑦𝑖𝑘 − 𝑦𝑖𝑘). ෢(𝑦𝑖𝑘 .(1 - ෞ𝑦𝑖𝑘)) . 𝑎𝑘

[𝑛−1]

Then the new weight is calculated:

𝑤𝑘
[𝑛]

= 𝑤𝑘
[𝑛]

- 𝝀. ෢(𝑦𝑖𝑘 − 𝑦𝑖𝑘). ෢(𝑦𝑖𝑘 .(1 - ෞ𝑦𝑖𝑘)) . 𝑎𝑘
[𝑛−1]

Effect of the considered neuron on the global loss

Effect of the input of the neuron on its output

Effect of the considered weight on the input

=
𝛿𝐿𝑖
෣𝛿𝑦𝑖𝑘

. 𝑔′ 𝑎𝑘
[𝑛]

. 𝑎𝑘
[𝑛−1]

Back propagation - Hidden Layer(s)

23

For the hidden layers (𝑙 ≠ 𝑛), the weight have more way to impact the
gradient. This equation gives the way to modify all weights:

𝑤𝑖𝑗
[𝑙]

= 𝑤𝑖𝑗
[𝑙]

- 𝜆. 𝑒𝑖
[𝑙]
. 𝑎𝑗

[𝑙−1]

With 𝑎𝑗
[0]

is the 𝑥𝑖𝑗(the jth element of the ith case)

Where 𝑒𝑗
[𝑙]

is defined in a recursive way:

𝑒𝑗
[𝑙−1]

= 𝑔′ 𝑎𝑗
𝑙−1

. σ𝑘𝑤𝑘𝑗
[𝑙]

. 𝑒𝑘
[𝑙]

𝑒𝑗
[𝑛]

= ෢(𝑦𝑖𝑗 − 𝑦𝑖𝑗). 𝑔′(𝑎𝑗
𝑛
)

Back propagation - Example

24

Considering the total error 𝑳 is calculated with:

Learning rate 𝜆 = 0.1

1

0

0.5

0.5

0

1

0.5

0.5

1

0.5

0.7

0

0.82 0.90

0.860.82

errors !

Back Propagation

𝐿 =
1

2
.෍

𝑖,𝑗

(෣𝑦𝑖𝑗 𝜃 − 𝑦𝑖𝑗)
2

L = 0.39

New_𝑤11
[𝑛]

= 𝑤11
[𝑛]

- 𝝀. ෢(𝑦𝑖𝑘 −

𝑦𝑖𝑘). ෢(𝑦𝑖𝑘 .(1 - ෞ𝑦𝑖𝑘)) . 𝑎𝑘
[𝑛−1]

𝑤11
[𝑛]

New_𝑤11
[𝑛]

= 0.5-0.1*
(0.9−0.7)*(0.9*(1 - 0.9)) ∗ 0.82

New_𝑤11
[𝑛]

= 0.499

New_𝑤12
[𝑛]

= 0.5-0.1* (0.86 −

0)*(0.86*(1 - 0.86)) ∗ 0.82

New_𝑤12
[𝑛]

= 0.491

𝑤12
[𝑛]

Back propagation - Example

25

Considering the total error 𝑳 is calculated with:

Learning rate 𝜆 = 0.1

1

0

0.5

0.5

0

1

0.5

0.5

1

0.5

0.7

0

0.82 0.90

0.860.82

errors !

Back Propagation

𝐿 =
1

2
.෍

𝑖,𝑗

(෣𝑦𝑖𝑗 𝜃 − 𝑦𝑖𝑗)
2

L = 0.39

New_𝑤11
[𝑛−1]

= 𝑤11
[𝑛−1]

- 𝜆. 𝑒0
[1]
. 𝑎0

[0]

𝑒0
[1]

= 𝑔′ 𝑎0
𝑙−1

. σ𝑘𝑤𝑘𝑗
[𝑙]

. 𝑒𝑘
[𝑙]

𝑒0
[1]

= 0.82 ∗ (1 − 0.82). σ𝑘𝑤𝑘𝑗
[𝑙]

. 𝑒𝑘
[𝑙]

Or 𝑒𝑘
[𝑙]

were already calculated on the

previous step:

𝑒0
[𝑙]

= (0.9-0.7)*0.9*(1-0.9) = 0.018

𝑒1
[𝑙]

= (0.86-0)*0.86*(1-0.86)= 0.103

𝑒0
[1]

= 0.148.(0.018∗0.5+0.103∗0.5) =
0.009

New_𝑤11
[𝑛−1]

= 0.5- 0.1* 0.009 ∗ 1 =
0.499

𝑤11
[𝑛]

𝑤12
[𝑛]

𝑤11
[𝑛−1]

Back propagation - Example

26

After applying the backpropagation, we can see the effect of these new
weights on the loss function. The same work must be done on the biases.

1

0

0.5

0.5

0

1

0.5

0.5

1

0.5

0.7

0

0.82 0.90

0.860.82

L = 0.388

Back Propagation

1

0

0.499

0.499

0

1

0.499

0.491

0.998

0.491

0.7

0

0.82 0.90

0.860.82

1

0

0.499

0.499

0

1

0.499

0.491

0.998

0.491

0.7

0

0.817 0.902

0.8580.817

Forward Pass

When the feed forward was
applied on the network…

Evaluate the new weights and
biases through back
propagation

Redo the feed forward on this
new configuration and assess
the new loss function

… and continue until reaching
the convergence or the
stopping criteria…

Issue - Overfitting

27

Overfitting happens when the loss function is good (very low) on the learning
set, but is not able to generalize its predictions to additional or unseen
examples.

This problem, in regression purpose, is very close to polynomial
approximation issues (selection of the right polynomial degree).

OverfittingUnderfitting

Overfitting - Solutions

28

To avoid the overfitting situation, two main solutions are used:

lo
ss

 f
u

n
ct

io
n

Number of iteration (epoch)

Early stopping

Validation set
Training set

 Early Stopping: Among the
dataset, some are kept in a
validation set that is not used by
the ANN for its learning phase. The
loss function is calculated on both
train and validation sets. If after
several iterations the loss function
of validation set didn’t improve,
stop the training.

 Dropout: To avoid having neurons specializing on a particular
example, the dropout approach randomly switch off some neurons
during the training.

Then, how to split the dataset ?

29

To train an ANN, to test it and to avoid it from over-training, three pack of
points are required:

Training set
Validation

set
Test
set

Where:

 The training set is used to train the ANN (for the back propagation purpose)

 The validation set, which is composed of unseen cases, is used to check during
the training if the system is facing over-fitting or over-training issues

 The test set is used when the training is complete to verify the performances of
the trained ANN. Try to have a representative set for the final validation (points
well distributed in the domain)

 The distributions between these sets are generally following these rates: 80% /
15% / 5%

Neural Network - Complete Algorithm

30

Feed forward on the training data

Initialisation of the weights
and biases

Evaluation of the error

Propagate ?

Generate weights and biases of
output layer

By back propagation, generate
weights and biases of hidden

layer(s)

Not yet
=> Next training step

Training session
completed ?

Next
training

step

Is the stop criteria validated ?

Early stopping ?

Reset error

Stop

Restart with the training set

You and the Machine Learning process

31

You have to take a lot of decisions to build and improve the ANN meeting
your expectations and the type of data you want to process:

Available
data

Processed
data

Output
data

Pre-processing
ANN

Algorithm

training

D
ata id

en
tificatio

n

D
ata clean

in
g &

 selectio
n

Selectio
n

 o
f

P
aram

eters &
h

yp
er p

aram
eters

Er
ro

r
an

al
ys

is

improvements

2. Designing a neural network
Using python with Keras packages

Useful Python Libraries - Keras

33

Several Python packages are available to design ANN and train them. Among them,
sci-kit learn, pytorch and Tensorflow/keras (with can be seen as an interface to ease
the definition of an ANN) are very powerful (direct use of the computing power of
GPU Graphic Power Unit) and easy to handle.

You can find several resources on Internet:

– Installation of Keras with Anaconda framework: Link and at the end of this
course

– Several examples of the definition and implementation of MLP (called
sequential models in keras): Link (keras website), Link and Link

Several books are available (mainly in English) explaining how to
use these Python libs. Several packs are proposed at discount price
at www.humblebundle.com

https://scikit-learn.org/stable/
https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/
https://towardsdatascience.com/installing-keras-tensorflow-using-anaconda-for-machine-learning-44ab28ff39cb
https://keras.io/getting-started/sequential-model-guide/
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://machinelearningmastery.com/build-multi-layer-perceptron-neural-network-models-keras/
http://www.humblebundle.com/

Structure of a Keras program

34

The structure of an ANN designed in Keras follow this structure:

Import all the mandatory packages

Load and prepare the dataset (normalize + split into
the 3 sets (training, validation and test))

Define the structure of the ANN (layers and their
characteristics)

Run the learning phase (after defining the loss function,
and the optimisation behaviour)

Consult and analyse the results and the ANN
final configuration and save the configuration

Use the ANN final configuration
to new cases

Packages import

35

As usual in python, it is necessary to import a set of packages needed to define, train
and use an artificial neural network:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.utils import plot_model

Package to define a MLP

Package to
structure a MLP

Package to define the
minimisation parameters
of the back-propagation

Package to plot and represent
the network

Structuring the layer(s)

36

As soon as the MLP is defined (Sequencial Neural Network), you can easily add one
by one its layers by describing their key parameters:

• its name

• the number of neurons allocated to the layer (first input parameter,
mandatory)

• for the first layer (only), the number of input neurons (input_dim)

• the type of activation function (activation to select among: 'relu',
'sigmoid', 'linear', 'tanh',…) => Only one activation function can be
allocated to all neurons of a layer

• the activation of bias or not (True or False)

Example:

my_network = Sequential()

my_network.add(Dense(20, input_dim = 10, activation = 'relu’))

my_network.add(Dense(4, activation = 'sigmoid'))

It’s important to check that the model is consistent, for instance that input_dim
is equal to the dimension of training data, or in the case of classification that the
final layer has an activation function compatible (sigmoid, tanh…)

Check the structure

37

Several methods are available to access to the structure of the network:

• Summary(): generates the structure and print it on the debug console

• If you want to have a graphical feedbacks of the structure of your ANN, it is possible to
generate an image of it. To do so, import plot_model from
tensorflow.keras.utils.

plot_model(my_network,to_file='model_plot.png', show_shapes=True)

Back-propagation (learning) parameters

38

As soon as the structure defined, it is necessary to define the learning parameters :

– The selection of the gradient parameters (learning rate and the momentum),
describing the optimisation parameters:

Op_params = SGD(learning_rate, momentum), both are float numbers

– The selection of the loss function among the ones available

• For regression: 'mean_squared_error', 'mean_absolute_error’

• For classification: 'binary_crossentropy’ (2 classes),
'categorical_crossentropy’ (more than 2 classes)

– The choice of the performance indicator (analysis of the accuracy of the ANN)
among the ones available ('accuracy' and 'binary_accuracy')

Example:

op_params = SGD(0.1 , 0.9)

my_network.compile(loss='binary_crossentropy', optimizer=
op_params, metrics=['binary_accuracy'])

Learning definition and running

39

The network is now ready to be trained. To do so, the next step aims at defining and
running the training. The method to use is fit, which is waiting for a set of input
parameters:

• The input dataset (as a numpy or a python list of list) - mandatory

• The output dataset (same constraint than for the input) - mandatory

• The epochs (integer the number of iteration) – mandatory - mandatory

• The batch_size (integer defining the size of the mini-batch)

• The validation_split, float number representing the part of the dataset to use for the
validation of the network. It is possible to give through the input parameter
validation_inputs the value to consider as validation set.

• Verbose (0,1,2) to define the type of feedbacks given during the training (from nothing
to complete)

Example:
my_network.fit(Inputs, Outputs, epochs = 1500, batch_size = 250,
validation_split = 0.15)

Training run

40

During the training, if verbose parameter is defined to 2, you can see the evolution of
the loss function and the accuracy function if you selected or defined them.

Evaluation of the loss function
on the epochEvolution of the

batch processing

Current epoch (iteration of the
training phase)

Training - Evolution of loss and accuracy 1/2

41

It is possible to have access to the evolution of the loss (of the training and validation
sets) and metrics (accuracy selected on the parameters of the fit function) after the
training of a network, since Keras stores all this data in an history.

For example:

my_history = my_network.fit(Inputs, Outputs, epochs = 1500, batch_size =
250, validation_split = 0.15)

To access this information, store into a variable the result of the fit function. From this
variable you can have access to this history. Before requesting any data, you can firstly
check the ones available by using the keys() parameter of the history.

For example:

print(my_history.history.keys())

Training - Evolution of loss and accuracy 2/2

42

As soon as checked the data available in the history, you can access or plot them. As
an example, this code will plot the evolution of the accuracy and loss function of the
training defined on the previous slide:

plt.figure("Evolution of loss and accuracy during the training")

plt.plot(my_history.history['loss'], label="loss")

plt.plot(my_history.history['binary_accuracy'], label="accuracy")

plt.xlabel('epoch')

plt.legend(['loss', 'accuracy'], loc='right’)

plt.show()

Use a trained network

43

As soon as the network is trained and its accuracy is considered satisfactory, it is
possible to use it on new cases to predict their output or to classify them.

The instructions available in keras depends on the type of ANN:

• For regression problems: the method predict takes as inputs a batch of cases/points
and generates the output vector (as a numpy matrix or vector) regarding the current
configuration of the network

• For classification problems: the method predict_classes takes as inputs a batch of
cases/points and generates the output vector regarding the current configuration of the
network

Example:

my_network.predict(Inputs_to_test)

Or you can use evaluate, or a simple call of the network if the goal is just to work on
only one evaluation (not a batch)

Classification – Confusion Matrix

44

In classification problems, it is possible to calculate the confusion matrix that
synthetises the accuracy (good prediction) of the classifier and underlining the main
risks :

✓ Alpha: predicting False something that is True

✓ Beta: predicting as True something that is False

β

α

Prediction

Tr
u

e
la

b
e

l

Tr
u

e
Fa

ls
e

True False

Classification – Confusion Matrix

45

To easily handle the confusion matrix, the sci-kit learn package is relevant and fully
compatible with keras trained neural networks.

from sklearn.metrics import confusion_matrix

predictions = ANN.predict_classes(Inputs)

c = confusion_matrix(y_true, predictions)

print(c)

Regression – Regression plot and r_squared metric

46

In regression problems, it is possible to assess the relevance of the regression by using
r² indices on the data composed by the prediction of the network and the expected
value.

Regression - Regression plot - Code

47

To plot and calculate this metric, you can adapt these programming lines, regarding
your dataset and the prediction of your network:

from sklearn.metrics import r2_score

plt.figure("Comparison between predicted and expected value - calculated on
train_dataset")
plt.scatter(outputs_train, mon_reseau.predict(inputs_train))
plt.xlabel("Expected value of defect - train")
plt.ylabel("Predicted value of defect - train")
plt.annotate("r-squared = {:.3f}".format(r2_score(outputs_train,
mon_reseau.predict(inputs_train))), (-80, 60))
plt.show()

Access to the parameters of the ANN

48

It is possible to have a look at the parameters (weights and bias) of each neuron of the
network, to check the relative importance of a neuron (input or intermediate one). To
do so, use the method weights.

In the case of a MLP composed by 1 hidden layer of 2 neurons and one output neuron,
the result has this shape:

Input weights of each neuron
composing the first hidden layer

Biases of each neuron composing
the first hidden layer

Analyse features importance - Shap

49

Since the analysis of the weights is quite complicate, even more on complex model,
several tools are available to analyse the importance of input neurons on the
predictions.

It can be relevant to compare this analysis with statistical analysis of the input data
before training to detect some biases due to the network structure.

…

https://shap-lrjball.readthedocs.io/en/latest/generated/shap.summary_plot.html?highlight=summary_plot

Analyse features importance - SHAP

50

Code example:

import shap as sh

explainer = sh.DeepExplainer(network, shap_data)

shap_values = explainer.shap_values(other_input_data)

sh.initjs()

sh.summary_plot(shap_values, headers)

Set of input data (about 50/100
points) in numpy format

Neural network developped in
tensorflow/keras packages

Set of input data (about 200 points)
in numpy format different from the
previous set of points

List of the labels (column names) of the
tested parameters (input parameters)

Save a trained network (to re-use after)

51

As soon as an ANN is trained and considered accurate, it is fortunately not necessary
to re-train at each use. It is then possible to save and load a network already trained
and configured.

First of all, import the loading functions to your python program:

from tensorflow.keras.models import load_model

From now, you can easily:

– Save your trained model with the function save(filename)

– Load your trained model with the function load_model(filename)

Example:

my_network.save("My_network.keras")

my_new_network = load_model("My_network.keras")

my_new_network.summary()

…

To go further… documents and videos

52

Videos on YouTube:

– 3blue1brown propose an interesting an well animated explanation of the
working of a neural network for hand writing recognition): Link

– Open course proposed by MIT: See more particularly videos 12a and 12b in
this playlist: Link

Blogs and websites:

• Keras webpage: Link

• Complete guide to ANN (not only MLP): Link

• Blog about ANN and deep learning: Link

• Another blog about machine and deep learning: Link

• Clear explanation of backpropagation on a example: Link

• Several datasets proposed: Link

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=TjZBTDzGeGg
https://faroit.com/keras-docs/1.0.0/
https://fr1lib.org/book/11970693/cb53f5?id=11970693&secret=cb53f5
https://www.machinecurve.com/index.php/category/deep-learning/
https://machinelearningmastery.com/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://archive.ics.uci.edu/ml/datasets/

3. Examples and exercices
Using python with Keras packages

Exercice – Classification

54

By using keras + numpy packages, three examples are proposed:

– Designing a simple perceptron where the separator is linear

– Designing a perceptron where the separator is not linear

– Improving the previous network by increasing its degree of freedom by
adding one new hidden layer

For these 3 examples, the structure of the designed network, its loss
evolution and prediction analysis are proposed.

generate_classification
_case

generate_classification_case1() generate_classification_case2()

Exercice – Regression (with noise or not)

55

generate_regression_case

By using keras + numpy packages, design a regression neural network. To do
so, the python function named generate_regression_case gives you a way to
generate randomly and with a controlled noise the point set to work on:

After completing the definition and training of the network on a case without any noise,
analyse the effect of the noise on the efficiency of the network.

From the data given as two csv files, design, train and analyse the
performances and results of two neural network types:

- A regression one (model reduction) – Network A

- A classification one – Network B

Problem 1: Regression + Classification

56

The code to load the dataset for the Network B is given as an example. Don’t hesitate to
copy/paste/modify or improve it for loading the datasets.

Try to evaluate the efficiency of the complete ANN process and compare it to a complete
one.

load_dataset_networkB

Network A
Regression

Network B
Classification…

2
4

 c
ap

to
rs

4 outputs

Move-Forward

Sharp-Right-Turn

Slight-Left-Turn

Slight-Right-Turn

Problem 2: Regression + Classification imbalanced data

The provided dataset, is the result of many gears simulations based on complex gears
models. The time needed to perform these simulations is too huge to be directly
integrated into an optimization algorithm. That is why an ANN is considered.

• It contains 15 inputs parameters (colored in light blue in the Excel file), some are tolerances
defined by designers and applied on the gears characteristics, and some are deviations on key
parameters of these gears mainly due to their manufacturing. The last input parameter is the
Kinematic Transmission Error (KTE).

• Three outputs are available (colored in gold in the provided file): the defect of each type of
produced gears and the most important output the amount of final assembled defects (the
most expensive ones).

The main goals of this project are:

• Firstly to check what are the parameters involved in the spur gear and crown wheel defects

• Secondly, to design a reasonable complex ANN accurately modelling the assembly defects.

57

% defect crown wheel ?

? % defect spur gear

? % defect assembly

4. Keras installation
Simple process to install Keras and other relevant packages

Downloading Anaconda

59

The first step is to download Anaconda package that includes a lot of packages
interesting for engineers and scientists. In addition, it comes with several
programming environment such as Spyder or Jupyter. To download this package, go to
its website and select the version fitting your operating system. Don’t download nor
install older version!

mailto:https://www.anaconda.com/products/individual

Creating the python environment

60

As soon as the package is installed, find and run the “Anaconda prompt” to open the
conda terminal. Notice that this will open on the base Anaconda environment.

The next step is to create a dedicated environment for ANN to avoid any conflict with
the current installation of your python environment (called (base)) or avoid breaking
your python installation on your computer.

To create an environment and to activate it, please type these two programming
commands:

✓ conda create -n ann_env, where ann_env is the name of the environment you want
to create.

✓ activate ann_env, where ann_env is the name of the environment you want to
activate.

Installation packages

61

At this step, update anaconda environment :

✓ conda update -n base -c defaults conda

When the correct environment is activated (this is the one in parenthesis in the
beginning of the prompt of the terminal), you can start installing the relevant
packages by typing all these programming instructions one by one and by confirming
the installation of the packages needed by pressing the “y” key:

✓ conda install python=3.8

✓ conda install tensorflow

✓ conda install pydot

✓ conda install matplotlib

✓ conda install scikit-learn

✓ conda install –c conda-forge shap

✓ conda install spyder=5 (or Jupyter, pycharm… depending on your loved
programming editor)

✓ conda install -c anaconda pandas

