Exercice 1: Transfert thermique dans une barre en acier (voir tableau 2)

On étudie le transfert thermique dans une barre en acier cylindrique de rayon **R** = 4 mm et de longueur **L** = 50 cm. La surface de la barre est calorifugée. On se place en régime stationnaire.

On considérera le cas où les deux extrémités sont maintenues respectivement à : T1 = 20 °C et T2 = 160 °C.

- 1. Déterminer le gradient de température global auquel est soumis la barre (expression littérale et application numérique).
- 2. Calculer:
 - flux de chaleur circulant dans la barre (expression littérale et application numérique),
 - densité de flux de chaleur circulant dans la barre (expression littérale et application numérique)
- 3. Trouver la quantité de chaleur transférée pendant 1 minute dans la barre (expression littérale et application numérique).
- 4. Exprimer le champ de température dans la barre.

Exercice 2 : Résistances thermiques de parois planes (voir tableaux 2 et 3)

Une paroi de 1 m² est constituée de briques de terre cuite creuses de 20 cm d'épaisseur comportant 48 alvéoles. Ce mur possède une résistance thermique de 0,80 W⁻¹.K.

- 1. Déterminer l'épaisseur d'une paroi de 1 m² présentant la même résistance thermique en :
 - béton plein,
 - laine de verre (ρ = 25 kg.m⁻³).
- 2. Quelle est la résistance thermique d'un mur de 10 m² monté avec les mêmes briques creuses que précédemment ?

Exercice 3 : Etude du comportement thermique d'un mur composite (voir tableaux 1 à 3)

On s'intéresse au mur extérieur plan sans ouvertures d'un bâtiment.

La constitution du mur d'une surface **S** = 20 m² est précisée dans le tableau ci-dessous.

Référence	Matériau	e (cm)
1	Enduit	2
2	Bloc béton 6 alvéoles	20
3	Polystyrène expansé DM	15
4	Plâtre	5

Tableau 1.

Données (valeurs conventionnelles) :

- Cœfficient d'échange superficiel face intérieure : hi = 8 W.m-2.K-1
- Cœfficient d'échange superficiel face extérieure : he = 25 W.m⁻².K⁻¹

On se placera dans les conditions suivantes :

- Température de l'air intérieur : Tair i = 19 °C
- Température de l'air extérieur : Tair e = 8 °C
- 1. Représenter le schéma électrique équivalent du mur. Les éléments suivants doivent apparaître :
 - modes de transfert thermique mis en jeu,
 - températures des interfaces,
 - expressions littérales des résistances thermiques (utiliser les symboles de l'énoncé).
- 2. Déterminer le cœfficient d'isolation thermique du mur (expression littérale et application numérique).
- 3. Calculer le flux thermique perdu par la façade (expression littérale et application numérique).

1,75

- 4. Déterminer les températures des zones suivantes (expressions littérales et applications numériques) :
 - face intérieure du mur.
 - interfaces entre les différents matériaux,

1,15

- face extérieure du mur.

45

 λ (W.m⁻¹.K⁻¹)

5 • Représenter le **champ de température** dans le système.

-									
	D.A. a. á via	A siam ave 1	Tanna audita	Dátan nlain	Laine de verre	Polystyrène	Frank it	Diâtro	
iviatei	iviateriau	Acier exo 1	Acier exo 1 Terre cuite Béton plein	Béton plein	$(\rho = 25 \text{ kg.m}^{-3})$	expansé DM		Platre	Tableau 2.

0,035

0,04

0,90

0,35

Matériau		Dimensions (e x h x L)	Nb d'alvéoles	Poids unitaire (kg)	M (W ⁻¹ .m ² .K)
Brique en		20 x 27,4 x 56	48	18,5	0,80
terre cuite		20 x 27,4 x 56	56	20,3	1,07
Bloc béton		20 x 20 x 50	6	19	0,23

Tableau 3.