Heat transfer

Supervised Practical Work no3 Forced and free convection

N. RANC

EXERCISE 1: Flat plate in parallel flow

Air at atmospheric pressure and ambient temperature $(20^{\circ}C)$ is in parallel flow over the top surface of a flat plate that is heated to a uniform temperature of $40^{\circ}C$. The plate have a length of 0.2 m (in the flow direction) and a width of 0.1 m. The free stream velocity of the air is $v_{\infty} = 10 \, ms^{-1}$. For gases and liquids with 0.6 < Pr < 50the local Nussel number can be expressed as

- (1)
- (2)
 - (3)

For the air, the heat capacity at constant pressure, the thermal conductivity and the dynamic viscosity are respectively $c_p = 1005 Jkg^{-1}K^{-1}$, $k = 24 \times 10^{-3} Wm^{-1}K^{-1}$ and $\mu = 18.5 \times 10^{-6} Pa.s.$

- 1. Calculate the global Reynolds number and deduced the flow regime.
- 2. Express the local heat transfer coefficient h(x).
- 3. What is the rate of the heat transfer from the plate to the air?
- 4. If the free stream velocity of the air is double, what is the rate of heat transfer?
- 5. Same question when the free stream velocity is multiply by 10 what is the rate of heat transfer?

EXERCISE 2: Glass screen situated in fireplace opening

A glass-door firescreen (figure 1), used to reduce exfiltration of room air through a chimney, has a height of $0.71 \, m$ and a width of $1.02 \, m$ and reaches a temperature of $232^{\circ}C$. If the room temperature is $23^{\circ}C$, estimate the convection heat rate from the fireplace to the room. For the air let us consider the heat conduction $k = 33.8 \times 10^{-3} W m^{-1} K^{-1}$, the kinematic viscosity $\nu = 26.4 \times 10^{-6} m^2 s^{-1}$, the thermal diffusivity $a = 38.3 \times 10^{-6} m^2 s^{-1}$ and thermal expansion $\alpha = 0.0025 K^{-1}$.

Figure 1: Schematic view of the firescreen

For a vertical plate, the correlation proposed by Churchill and Chu could be used in this case:

$$Nu_L = \left(0.825 + \frac{0.387Ra_L^{1/6}}{(1 + [0.492/Pr]^{9/16})^{8/27}}\right)^2 \tag{4}$$

This correlation is valid when the turbulent flow is obtained for Rayleigh number higher than 10^9 .

*