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Introduction

What is Heat Transfer?

Heat transfer is a science that seeks to predict the energy transfer that
may take place between and inside materials as a result of temperature
difference.

Remarks

@ Thermodynamics deals with energy equilibrium and does not predict
how fast the heat transfer will occur.

@ In thermodynamics, you have learned two type of energy exchange
by interaction of the system with surroundings : work and heat

@ It is necessary to introduce physical rules in order to describe the
heat transfer rate (in supplement of the two principles of
thermodynamics.)




Understand heat transfer

Heat transfer properties
@ Heat energy always moves from a warmer body to colder body

@ Heat transfer will continue until both bodies have the same
temperature

There is three modes of heat transfer
@ Conduction
@ Convection

@ Radiation




Conduction

Exemple

@ The candle heat the edge of
the bar.

@ There is heat transfer in the
bar and thus in your hand

Conductor

[

Properties of thermal conduction
1. Conduction is a mode of energy transfer within and between bodies.

2. Conduction can occur in all state of matter: gases, liquids, solids or
plasma.

3. The ability to transfer heat energy is quantify by the Thermal
Conductivity

4. Conduction is preponderant in solids.




Conduction : physical mechanisms 1

@ GAS or LIQUIDS: conduction is due to collisional and diffusive
transfer of kinetics energy of molecule during their random motions.
In liquids the conduction phenomenon is stronger because the
distances between atoms are smaller (more collisions)
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Conduction : physical mechanisms 2
@ SOLIDS : for solids there is two mechanisms to explain heat transfer.

» Lattice vibration : atoms in
lattice vibrate, interact with
their neighbors and transfer
kinetics energy.

> Free electrons effect (in
metals): movement of free
electrons in the lattice.
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Convection

Definition of convection
Convection is the transfer of heat by bulk motion (advection). J

There are two main modes of convection:

@ Natural convection : natural convection occurs due to temperature
differences which affect the density of the fluid. Heavier (more
dense) components will fall, while lighter (less dense) components
rise, leading to bulk fluid movement.

@ Forced convection : in the case of forced convection, fluid movement
results from external surface forces )




Natural convection

Case of gases : radiator in a
room

Case of liquids : water in a pan

Heated air rises, cools and fall

Hot water rises, cools and falls




Forced convection

Exemple: heat-sink and fan to cool a processor

@ Heat-sink to increase the
surface area which dissipates
heat

@ Fans to speed up the heat
exchange.




Radiation

The radiation

Heat transfer by radiation is the transfer of through electromagnetic
waves

Example: solar thermal power plant

@ Concentrated solar power
systems use mirrors to
concentrate a large area of
sunlight and thus solar thermal
energy, onto a small area

@ Electrical power is produced
when the concentrated light is
converted to heat, which drives
a heat engine (usually a steam
turbine) connected to an
electrical power generator.




Contents of the lecture

Objectives
@ To establish the physical rules in order to describe the heat transfer
rate for conduction, convection and radiation.

@ To highlight their consequences on the energy conservation (first law
of thermodynamics)
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Conduction



Basis of thermodynamics: internal energy

@ The internal energy noted U is the total energy contained by a
thermodynamic system

@ Energy needed to create the system, but excludes

> the energy to displace the system’s surroundings
> any energy associated with a move as a whole or due to external
force fields

@ Internal energy has two major components,

> kinetic energy at microscopic scale: motion of particles (translations,
rotations, vibrations),
> potential energy at microscopic scale: interaction between particles.



Basis of thermodynamics: enthalpy

@ The enthalpy is define as
H=U+pV
@ A small variation of enthalpy can also be express as:
dH =dU 4+ pdV + Vdp.

e Enthalpy includes
> the internal energy, which is the energy required to create a system,
> the amount of energy required to make room for it by displacing its
environment and establishing its volume and pressure.



Basis of thermodynamics: conservation of the energy

S|
>
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@ For a system undergoing only thermodynamics processes, i.e. a
closed system that can exchange only heat Q and work W, the
change in the internal energy dU is given by the first law of
thermodynamics.

dU =6W + 69



Basis of thermodynamics: particular transformations

Two special cases can be considered:

@ For a transformation at constant volume the work of the pressure
force work W = —pe:dV is equal to zero. We obtain

dU =W +3Q (1)
=0Q (2)
e For a transformation at constant pressure the equilibrium of pressure
gives pexr = p and the first law of thermodynamics allows to express
the enthalpy variation:
dH =dU+ pdV + Vdp (3)
~—~—

=0

=6Q (4)



Basis of thermodynamics: heat capacity and calorimetric
coefficient

@ Heat capacity per unit of mass at constant volume and at constant
pressure are define respectively by

1 /oU 1 (0H
E (87—> y = Cy and E (67_>p = Cp (5)

@ The internal energy and the enthalpy can thus express as:
dU = mc,dT + (¢ — p)dV and dH = mc,dT + (h+ V)dp, (6)

with £ and h two other calorimetric coefficients.



Basis of thermodynamics: heat capacity

@ The heat capacity of various material is given in the table

@ For a solids and liquids, which are slightly compressible, the heat
capacity at constant volume or constant pressure are equal

p=c=C

Table: Heat capacity for various materials at ambient temperature and

atmospheric pressure

|

\ cy in JmTkg—1 \ cpin Jmkg—1

air
water
steel

701
4187
460

1005
4187
460




Heat flux definition

@ The rate at which heat is transferred across any surface at a point P
per unit area per unit time is called the flux of heat at that point
across that surface and is denote ¢.

@ This notion can be extended to a tri-dimensional problem. The heat
flux vector ¢ is then define as

g= ¢y (7)

where ¢, ¢, and ¢, are the rate of heat flow across a unit surface
with a normal toward respectively x axis, y axis and z axis.



Heat flux properties

@ The the heat flux across an infinitesimal surface dS with a normal A7
is ¢ = q.ndS

@ The direction of the heat flux vector is the direction of the heat
transfer

o The unit of heat flux is W/m?



Fourier's law: 1D case

T() Ter+dy

o Fourier's law of heat conduction is the basic law which says that the
rate of heat flow across a unit area ¢ is proportional to the
temperature gradient perpendicular to the area (x direction).

o= k3T (8)

CTdx

@ k is called the thermal conductivity. This constant represent the
ability to transfer heat through a material. Its unit is Wm™1K~!



Thermal conductivity

@ The value thermal conductivity can vary from about 0.01 Wm—1K~1!
for gases to 1000 Wm~—1K~1 for pure metals. Following table gives
some values of the thermal conductivity for various materials.

Table: Thermal conduction value for classical material at ambient temperature.

Material Thermal conductivity
[Wm—1K™1]
air 0.025
wood (white pin) 0.12
rubber 0.16
cement(Portland) 0.29
concrete 0.5
glass 1.1
water 0.58
soil 1.5
ice 2
steel 52
stainless steel 16
aluminium alloy 120-180
pure aluminium 237
copper 401
silver 429




Fourier's in an isotropic material: 3D generalization

@ A generalization of the Fourier’s law to a tri-dimensionnal isotropic
material ! gives:

G=—kgrad T (9)

@ In the case of Cartesian coordinates:

oT
Ox
¢x oT
= o, | =—k| 2 (10)
¢2
oT
oz

@ With this definition the heat flux vector is normal to the isothermal
surface.

lIn an isotopic material the thermal properties are the same in all the space
directions



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

S

If we suppose a small volume dV = Sdx during a time dt, the first law of
thermodynamics gives

dH  §Q

H = h —_— = 11
d 0Q and then i dr (11)
dH dT
— = SdxpC—— = —¢(x + dx)S + ¢ (x)S + r(x, t)Sdx (12)
dt dt ————

Heat loss Heat source

where r(x,t) the heat source per unit of volume and per unit of time. Its
unit is Wm=3.



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

[ ¢<\>///¢<wdv>/ x

>

OT  —¢dx(x + dx) + ¢x(x) 09y
CE = Ix +r(x,t) =— o (x,1t)

Taking into account of the Fourier's law ¢, = —

k%—T, we obtain:
X

oT O*T
pCE = W + r(x, t)



Boundary conditions

@ T(¢)= Ty : imposed temperature (Dirichlet condition)

° o(f)=po=—k 2L , - imposed flux (Neumann condition)



Boundary conditions

@ ((¢) =0 : adiabatic condition

@ p(¢) = h(T(¢) — T,) convection condition with a fluid
> h: convection coefficient(Wm™2K™1)
> T,: fluid temperature



Boundary conditions

e Radiation: ¢(¢) = oF(T()* — T,)
» o Stefan Boltzmann constant
» F view factor
> temperature of the other surface

@ Particular case of small temperature difference: T(¢) ~ T, ~ Tp,:

o= h(T()—Tp,) with h, = 40FT3

@ Particular case of high temperature T,: ¢ = —O'FT: (Neumann
condition)



Particular thermal regimes

o Steady state regime: temperature field does not change any further:
oT 84)0 "
— =0 =0
ot ’ ot
T(M,t) = T(M)

@ The periodical regime: the temperature oscillate independently of
the initial conditions

T(M,t) = To(M) cos(Qt + )
and with a complex notation

T(M,t) = To(M)e*te®  with  T(M,t) = R(T(M,1t))



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

In the general 3D case, a small volume V is considered:

[~

If we postulate the local equilibrium of this volume, the application of the
first law of thermodynamics between time t and time t 4 dt for a
transformation at pressure volume gives:

dH =60 (15)



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

i///vdth:—//8‘/c7ﬁda—|—///vr(x,t)dv
://Vdivc'de+///vr(x,t)dV

with dh = pCdT = pC Tdt the variation of the specific enthalpy
(enthalpy per unit of volume).

(16)

(17)



The differential equation of conduction of heat in an
isotropic solid: case of motionless solids

The heat equation is then
pCT = —div g+ r(x, t)
And with the Fourier’s law the heat equation becomes
pCT = div (kgr@ T) + r(x, t)
If the heat conductivity is suppose to be independent of the space

position _
pCT = kAT + r(x,t)

with A the Laplacian operator.



Coordinate expressions of the Laplacian operator

Cartesian coordinates
P PP

Af Ox? + Oy? +@

(21)

Cylindrical coordinates
0’f 10f 10°F  O*f
e e
or2  ror  r2ov?  9z2
with (x = rcosd,y = rsind, z).

Af

(22)

Spherical coordinates
_Pf 20f 10 1 of 1 Pf
02 rdr r29g?  rPtanp Oy r2sin? p 092

with (x = rsinpcosd,y = rsinpsind, z = rcos p).

Af

(23)




The differential equation of conduction of heat in an
isotropic solid: case of moving solids

@ Case of 1D problem:

» We consider a solid medium moving with a velocity vi along the x
axis.

» At time t we consider a volume of material contain in the domain
ABCD. Between time t and t + dt the materials move from the
domain ABCD to the domain A'B'C'D’.

» dH, 6H. and §H; represent the enthalpy respectively in the A'B'CD,
ABA'B’ and CDC'D’ domains.

U




The differential equation of conduction of heat in an
isotropic solid: case of moving solids

@ At time t the enthalpy contain in domain ABCD is

dH(t) 4+ 6H. (24)

At time t + dt the material move in A'B’CD and the enthalpy in this
domain is

dH(t +dt) + dH; (25)

@ The first law of thermodynamics applied to the materials in the
ABCD domain at time t and between t and t + dt is

dH(t + dt) + 6H, — dH(t) — 6H. = 6Q (26)



The differential equation of conduction of heat in an

isotropic solid: case of moving solids
N 3U,
X

The different term of this last equation can be expressed as follow:
e dH(t 4+ dt) = SdxpCT(t + dt)
e dH(t) = SdxpCT(t)
@ dHs = Sv,dt T(x + dx)
@ dH. = Sv,dt T(x)
We then obtain

SdxpCT(t +dt) — SdxpCT(t) + Svedt T(x + dx) — Sv,dt T(x)
= —S¢x(x + dx) + So«(x) (27)

and

a—Tdtdx + pCvxa—dedt = _8¢X

pC ot Ox Ox

dxdt (28)



The differential equation of conduction of heat in an
isotropic solid: case of moving solids

oT oT Oy
pC (at + ax) = " ox (29)
and with the Fourier's law and a constant heat conductivity
DT oT oT o*T
PCor =rC (aﬁ“w) = ko (30)

where % denotes the 'differentiation following the motion of the
temperature with respect to the time.



The differential equation of conduction of heat in an
isotropic solid: case of moving solids

The previous heat equation can be generalized to a three-dimensional
problem:

DT oT oT oT oT oT —
—_— = — tw—Fvy—+Vv,— | =pC | —+(Vgrad) T
pC Dt pC(@t ox TV ay T 82> P (81” (V-grad) )

= kAT (31)



Convection



Introduction to convection

@ Convection: heat transfer in a fluid or between a fluid and a solid
due to bulk motion (advection)

@ Two main types of thermal convection:

> Natural convection (or free convection): the fluid motion is due to
body force which acts on a fluid where there is density gradient. The
net effect is a buoyancy force which induces fluid movement. In the
most common case, the density gradient is do to temperature
gradient.

> Forced convection: the relative motion in the fluid or between the
fluid and the surface is maintained by external means such as a fan
or a pump.

Since free convection flow velocities are generally much smaller than
those associated with forced convection, the corresponding convection
transfer rates are also smaller.



Convection heat transfer coefficient

@ Estimation of the heat flux due to convection on a fluid surface
interface:



Typical value of the convection heat transfer coefficient

Process hin Wm—2K™!
Free convection in gases 2-25
Free convection in fluids 50 - 1000
Forced convection in gases 25 - 250
Forced convection in fluids 50 - 20000
Convection with phase change
(Boiling or condensation) 25000 - 100000

How to estimate the convection heat transfer coefficient in a given
configuration 7
h="f(C, ke, p,p,c, L, V, T...)



Forced convection : associated equations

Hypothesis : y
. v(x)

@ steady state regime

@ incompressible fluid: p = Cst AT
The momentum equation is (Navier Stockes
equation): \Ts Ix)

v o o %
por = pE —grad p+ u&v M

Projection along y axis:

P\Yax "oy ) TP T8 5, TH | o2 T 92
=0 ~



Forced convection :

Boundary conditions :

U(O,y) =0 V(O’y) =0 V(OO’}/) = Vo

Mass equation in steady state regime:

@ + @ =0
ox Oy
Heat equation:
AT, 0T 0T _ ke
Ox dy ot pC

=0

with a = k—g the heat diffusivity in m?s~

Boundary conditions :

1

associated equations

y

T T
Ox2  Oy?
——
~0

T(0,y) = Ts; T(o0,y) = To



Forced convection : dimensionless variables and equations

Definition of dimensionless variables:

o x* =7, y* =%, where Lis a characteristic length for the problem
(i.e. length of the plate),

® u* =, v' =y, where V is the velocity upstream of the surface,

o TH = T—T

7 the dimensionless temperture,

e pF= #, the dimensionless pressure
Dimensionless momentum equation:

LOve  _ovr Op* LV §?v*

o TV dy*  Oy* +Mp7p Ox*?
~——

[ - A

1
pLV 7 Re

. pV?
with Re the reynolds number : Re = Jnertia forces o [
Viscous forces %




Forced convection: dimensionless variables and equations

Dimensionless heat equation equation:

SOTT | OT" _ 3 2PT*
Ix* dy* VL ox*2

with

a kfl_lpkf_]. kf

VL pCVL ReupC Re uC

1

Pr

. __ Momentum diffusion ~_
Pr the Prandt number : Pr = e dusion - A~

vl

with % the kinematic viscosity in m2s~1



Forced convection: dimensionless variables and equations
Boundary condition of the heat transfer problem:

Y= h(TS - Too)

and oT oT* T. T.
_ —k vr — —k oo Is
4 " ox 0 " ox =0 L
thus o 9T
h="t
L Ox* | ._q
and the Nusselt number is defined as
Nu = or = ﬁ
ox* =0 ke

The Nusselt number represents the ratio of the heat flux due to
convection to the heat flux:

$Pconduction ks % ks

Ny — Pconvection hAT E



Correlation in forced convection

The equilibrium equations prompt us to expect heat transfer correlation
of the form:
g(Nu, Re, Pr) =0

or

Nu = f(Re, Pr)



Example of correlation in forced convection

@ Laminar flow on a plate: Re < 3 x 10° and Pr > 0.5

Nu = 0.664Re'/2pr/3

@ Turbulent flow on a plate: Re > 5 x 105 and Pr > 0.5

Nu = 0.035Re*/5 prl/3



Example of correlation in forced convection

@ Laminar flow in a pipe: Re < 2300

Nu = 3.66

@ Turbulent flow in a pipe: Re > 10*

Nu = 0.023Re*/5 pro4



Natural convection

hypothesis : y
@ steady state regime )
wx
@ gravity force is taken into account l g
The momentum equation is f
TP
dv. v 109p p 0%v 32?'7% e

U +V— === =
Ox dy p Oy £ p Ox?
Far from the surface, a quasistatic pressure is supposed:

op

aiy = P8

and thus



Natural convection
The volumetric thermal expansion coefficient

1 /ovy dp
b=y (aT) (ar)

~_LlPo—p

pToo—T

and thus

Density difference is thus

The momentum equation becomes:

ov ov ,u@v

o T Vay — €T Z )+ 5

Buoyancy force
The heat equation remains unchanged:

oT | T _ k0T
" ox By pC Ox?



Normalized equations of natural convection

Normalization of variables: x* = f y = % u* = % v¥ = % and
x . T—T
=77

where L is a characteristic length and V an arbitrary reference velocity.
The momentum equation is reduced to:

ov* ov:  gB(Ts — Te)L 1 &%v*
* * — S8F\’s 10/ - v
Yo TV oy V2 Re Dx*2
and s
gB(Ts - Too)L _ gﬁ(Ts - Too)L (L)z
V2 12 VL
—_—
Gr 1/Re?

where Gr is the Grashof number which indicates the ratio of buoyancy
force to the viscous force acting in the fluid.



Correlation in natural convection

The equilibrium equations prompt us to expect heat transfer correlation
of the form:

Nu = f(Re, Gr, Pr)

This type of correlations are pertinent when forced and free occur.
Generally % >> 1 and force convection effects may be neglected and:

Nu = f(Gr, Pr)

In this case the natural convection flow is induced solely by buoyancy
forces.



Example of correlation in natural convection

@ Vertical plate in laminar flow if 10* < Ra = GrPr < 10° and
Ts = Cst:
Nu = 0.59Ra'/*

e Verticale plate in turbulent flow (10° < Ra < 1012)

Nu = 0.13Ra'/3

@ Vertical cylinder (length L):
> if % > 35Gr— /4 plate correlation
> if 2 >35G71/%

Nuexp(N)—O.6<L> Ra



Radiation
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