Heat Transfer : Lecture notes

Nicolas Ranc

École Nationale Supérieure d'Arts et Métiers

2020-2021

(ロ)、(型)、(E)、(E)、 E) の(()

Introduction

Introduction

What is Heat Transfer?

Heat transfer is a science that seeks to predict the energy transfer that may take place between and inside materials as a result of temperature difference.

Remarks

- Thermodynamics deals with energy equilibrium and does not predict how fast the heat transfer will occur.
- In thermodynamics, you have learned two type of energy exchange by interaction of the system with surroundings : work and heat
- It is necessary to introduce physical rules in order to describe the heat transfer rate (in supplement of the two principles of thermodynamics.)

Understand heat transfer

Heat transfer properties

• Heat energy always moves from a warmer body to colder body

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

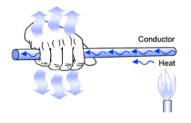
• Heat transfer will continue until both bodies have the same temperature

There is three modes of heat transfer

- Conduction
- Convection
- Radiation

Conduction

Exemple



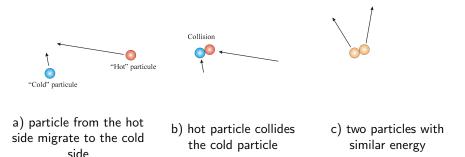
- The candle heat the edge of the bar.
- There is heat transfer in the bar and thus in your hand

Properties of thermal conduction

- 1. Conduction is a mode of energy transfer within and between bodies.
- 2. Conduction can occur in all state of matter: gases, liquids, solids or plasma.
- 3. The ability to transfer heat energy is quantify by the **Thermal Conductivity**
- 4. Conduction is preponderant in solids.

Conduction : physical mechanisms 1

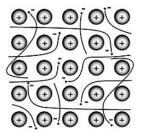
 GAS or LIQUIDS: conduction is due to collisional and diffusive transfer of kinetics energy of molecule during their random motions. In liquids the conduction phenomenon is stronger because the distances between atoms are smaller (more collisions)



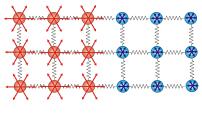
▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

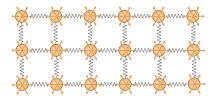
Conduction : physical mechanisms 2

- SOLIDS : for solids there is two mechanisms to explain heat transfer.
- Free electrons effect (in metals): movement of free electrons in the lattice.



 Lattice vibration : atoms in lattice vibrate, interact with their neighbors and transfer kinetics energy.





Convection

Definition of convection

Convection is the transfer of heat by bulk motion (advection).

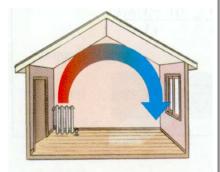
There are two main modes of convection:

- Natural convection : natural convection occurs due to temperature differences which affect the density of the fluid. Heavier (more dense) components will fall, while lighter (less dense) components rise, leading to bulk fluid movement.
- Forced convection : in the case of forced convection, fluid movement results from external surface forces

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Natural convection

Case of gases : radiator in a room



Heated air rises, cools and fall

Case of liquids : water in a pan



Forced convection

Exemple: heat-sink and fan to cool a processor

- Heat-sink to increase the surface area which dissipates heat
- Fans to speed up the heat exchange.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Radiation

The radiation

Heat transfer by radiation is the transfer of through electromagnetic waves

Example: solar thermal power plant

- Concentrated solar power systems use mirrors to concentrate a large area of sunlight and thus solar thermal energy, onto a small area
- Electrical power is produced when the concentrated light is converted to heat, which drives a heat engine (usually a steam turbine) connected to an electrical power generator.

Contents of the lecture

Objectives

- To establish the physical rules in order to describe the heat transfer rate for conduction, convection and radiation.
- To highlight their consequences on the energy conservation (first law of thermodynamics)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of contents

Introduction

Conduction

Basis of thermodynamics

Heat flux definition

Fourier'law

The differential equation of conduction of heat in an isotropic solid:

case of motionless solids

Boundary conditions

Particular thermal regimes

The differential equation of conduction of heat in an isotropic solid: case of moving solids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Convection

Introduction on convection

Convection heat transfer coefficient

Forced convection

Associated equations and boundary conditions

Natural convection

Associated equations and boundary conditions

Radiation

Conduction

Basis of thermodynamics: internal energy

- The internal energy noted U is the total energy contained by a thermodynamic system
- Energy needed to create the system, but excludes
 - the energy to displace the system's surroundings
 - any energy associated with a move as a whole or due to external force fields
- Internal energy has two major components,
 - kinetic energy at microscopic scale: motion of particles (translations, rotations, vibrations),
 - potential energy at microscopic scale: interaction between particles.

- ロ ト - 4 回 ト - 4 □ - 4

Basis of thermodynamics: enthalpy

• The enthalpy is define as

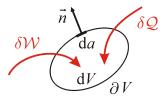
$$H = U + pV$$

• A small variation of enthalpy can also be express as:

$$\mathrm{d}H = \mathrm{d}U + p\mathrm{d}V + V\mathrm{d}p.$$

- Enthalpy includes
 - the internal energy, which is the energy required to create a system,
 - the amount of energy required to make room for it by displacing its environment and establishing its volume and pressure.

Basis of thermodynamics: conservation of the energy



• For a system undergoing only thermodynamics processes, i.e. a closed system that can exchange only heat Q and work W, the change in the internal energy dU is given by the first law of thermodynamics.

$$\mathsf{d} U = \delta \mathcal{W} + \delta \mathcal{Q}$$

(日) (四) (日) (日) (日)

Basis of thermodynamics: particular transformations

Two special cases can be considered:

• For a transformation at constant volume the work of the pressure force work $\delta W = -p_{ext} dV$ is equal to zero. We obtain

$$\mathsf{d}U = \delta \mathcal{W} + \delta \mathcal{Q} \tag{1}$$

$$=\delta Q$$
 (2)

• For a transformation at constant pressure the equilibrium of pressure gives $p_{ext} = p$ and the first law of thermodynamics allows to express the enthalpy variation:

$$dH = dU + pdV + \underbrace{Vdp}_{=0}$$
(3)
= δQ (4)

Basis of thermodynamics: heat capacity and calorimetric coefficient

 Heat capacity per unit of mass at constant volume and at constant pressure are define respectively by

$$\frac{1}{m} \left(\frac{\partial U}{\partial T} \right)_{V} = c_{V} \quad \text{and} \quad \frac{1}{m} \left(\frac{\partial H}{\partial T} \right)_{p} = c_{p} \quad (5)$$

The internal energy and the enthalpy can thus express as:

 $dU = mc_v dT + (\ell - p)dV \text{ and } dH = mc_p dT + (\bar{h} + V)dp, (6)$

with ℓ and \overline{h} two other calorimetric coefficients.

Basis of thermodynamics: heat capacity

- The heat capacity of various material is given in the table
- For a solids and liquids, which are slightly compressible, the heat capacity at constant volume or constant pressure are equal :c_p = c_v = C

Table: Heat capacity for various materials at ambient temperature and atmospheric pressure

	c_V in $Jm^{-1}kg-1$	c_p in $Jm^{-1}kg-1$
air	701	1005
water	4187	4187
steel	460	460

Heat flux definition

- The rate at which heat is transferred across any surface at a point P per unit area per unit time is called the flux of heat at that point across that surface and is denote φ.
- This notion can be extended to a tri-dimensional problem. The heat flux vector \vec{q} is then define as

$$\vec{q} = \begin{pmatrix} \phi_x \\ \phi_y \\ \phi_z \end{pmatrix}$$
(7)

where ϕ_x , ϕ_y and ϕ_z , are the rate of heat flow across a unit surface with a normal toward respectively x axis, y axis and z axis.

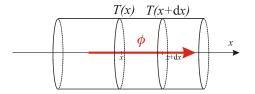
Heat flux properties

• The the heat flux across an infinitesimal surface dS with a normal \vec{n} is $\phi = \vec{q}.\vec{n} dS$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The direction of the heat flux vector is the direction of the heat transfer
- The unit of heat flux is W/m^2

Fourier's law: 1D case



 Fourier's law of heat conduction is the basic law which says that the rate of heat flow across a unit area φ is proportional to the temperature gradient perpendicular to the area (x direction).

$$\phi = -k \frac{\mathrm{d}T}{\mathrm{d}x} \tag{8}$$

 k is called the thermal conductivity. This constant represent the ability to transfer heat through a material. Its unit is W m⁻¹ K⁻¹

Thermal conductivity

• The value thermal conductivity can vary from about $0.01 Wm^{-1}K^{-1}$ for gases to $1000 Wm^{-1}K^{-1}$ for pure metals. Following table gives some values of the thermal conductivity for various materials.

Table: Thermal conduction value for classical material at ambient temperature.

Material	Thermal conductivity $[Wm^{-1}K^{-1}]$
air	0.025
wood (white pin)	0.12
rubber	0.16
cement(Portland)	0.29
concrete	0.5
glass	1.1
water	0.58
soil	1.5
ice	2
steel	52
stainless steel	16
aluminium alloy	120-180
pure aluminium	237
copper	401
silver	429

<u>▲□▶▲</u>■▶★∃▶★∃▶ ∃ のQで

Fourier's in an isotropic material: 3D generalization

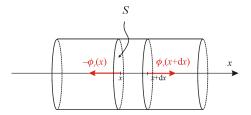
• A generalization of the Fourier's law to a tri-dimensionnal isotropic material ¹ gives:

$$\vec{q} = -k \ \overrightarrow{\text{grad}} \ T$$
 (9)

• In the case of Cartesian coordinates:

$$\vec{q} = \begin{pmatrix} \phi_x \\ \phi_y \\ \phi_z \end{pmatrix} = -k \begin{pmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \\ \frac{\partial T}{\partial z} \end{pmatrix}$$
(10)

• With this definition the heat flux vector is normal to the isothermal surface.

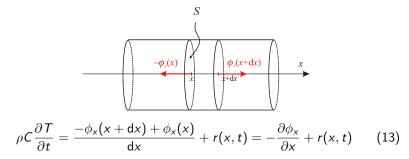


If we suppose a small volume dV = Sdx during a time dt, the first law of thermodynamics gives

$$dH = \delta Q \quad \text{and then} \quad \frac{dH}{dt} = \frac{\delta Q}{dt} \tag{11}$$

$$\frac{dH}{dt} = Sdx\rho C \frac{dT}{dt} = \underbrace{-\phi_x(x+dx)S + \phi_x(x)S}_{\text{Heat loss}} + \underbrace{r(x,t)Sdx}_{\text{Heat source}} \tag{12}$$

where r(x, t) the heat source per unit of volume and per unit of time. Its unit is Wm^{-3} .



Taking into account of the Fourier's law $\phi_x = -k \frac{\partial T}{\partial x}$, we obtain:

$$\rho C \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} + r(x, t)$$
(14)

Boundary conditions

• $T(\ell) = T_0$: imposed temperature (Dirichlet condition)

•
$$\varphi(\ell) = \varphi_0 = -k \left. \frac{\partial T}{\partial x} \right|_{\ell}$$
: imposed flux (Neumann condition)

Boundary conditions

• $\varphi(\ell) = 0$: adiabatic condition

•
$$\varphi(\ell) = h(T(\ell) - T_a)$$
 convection condition with a fluid

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ▶ h: convection coefficient(W m⁻² K⁻¹)
- ► T_a: fluid temperature

Boundary conditions

- Radiation: $\varphi(\ell) = \sigma F(T(\ell)^4 T_p^4)$
 - σ Stefan Boltzmann constant
 - F view factor
 - temperature of the other surface

• Particular case of small temperature difference: $T(\ell) \approx T_p \approx T_m$:

$$\varphi = h_r(T(\ell) - T_p)$$
 with $h_r = 4\sigma F T_m^3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Particular case of high temperature T_p : $\varphi = -\sigma F T_p^4$ (Neumann condition)

Particular thermal regimes

• Steady state regime: temperature field does not change any further:

$$rac{\partial T}{\partial t} = 0, \qquad rac{\partial ec{arphi}}{\partial t} = ec{0}$$
 $T(M, t) = T(M)$

 The periodical regime: the temperature oscillate independently of the initial conditions

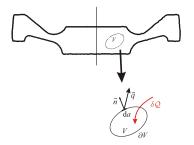
$$T(M,t) = T_0(M)\cos(\Omega t + \Phi)$$

and with a complex notation

 $\overline{T}(M,t) = T_0(M)e^{j\omega t}e^{j\Phi}$ with $T(M,t) = \Re(\overline{T}(M,t))$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

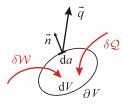
In the general 3D case, a small volume V is considered:



If we postulate the local equilibrium of this volume, the application of the first law of thermodynamics between time t and time t + dt for a transformation at pressure volume gives:

$$\mathsf{d}H = \delta \mathcal{Q} \tag{15}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



$$\frac{1}{\mathrm{d}t} \iiint_{V} \mathrm{d}h\mathrm{d}V = -\iint_{\partial V} \vec{q}.\vec{n}\mathrm{d}a + \iiint_{V} r(x,t)\mathrm{d}V \qquad (16)$$
$$= \iiint_{V} \mathrm{div} \ \vec{q}\mathrm{d}V + \iiint_{V} r(x,t)\mathrm{d}V \qquad (17)$$

with $dh = \rho C dT = \rho C \dot{T} dt$ the variation of the specific enthalpy (enthalpy per unit of volume).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

The heat equation is then

$$\rho C \dot{T} = -\operatorname{div} \vec{q} + r(x, t) \tag{18}$$

And with the Fourier's law the heat equation becomes

$$\rho C \dot{T} = \operatorname{div} \left(k \overrightarrow{\operatorname{grad}} T \right) + r(x, t)$$
(19)

If the heat conductivity is suppose to be independent of the space position

$$\rho C \dot{T} = k \Delta T + r(x, t)$$
⁽²⁰⁾

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with Δ the Laplacian operator.

Coordinate expressions of the Laplacian operator

Cartesian coordinates

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
(21)

Cylindrical coordinates

$$\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \vartheta^2} + \frac{\partial^2 f}{\partial z^2}$$

with $(x = r \cos \vartheta, y = r \sin \vartheta, z)$.

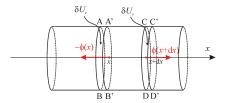
Spherical coordinates

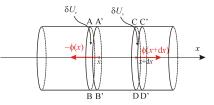
$$\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{r^2 \tan \varphi} \frac{\partial f}{\partial \varphi} + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial^2 f}{\partial \vartheta^2}$$
(23)
with $(x = r \sin \varphi \cos \vartheta, y = r \sin \varphi \sin \vartheta, z = r \cos \varphi).$

(22)

- Case of 1D problem:
 - We consider a solid medium moving with a velocity v_x along the x axis.
 - At time t we consider a volume of material contain in the domain ABCD. Between time t and t + dt the materials move from the domain ABCD to the domain A'B'C'D'.
 - ► d*H*, δH_e and δH_s represent the enthalpy respectively in the A'B'CD, ABA'B' and CDC'D' domains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで





• At time t the enthalpy contain in domain ABCD is

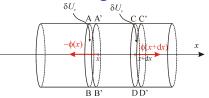
$$dH(t) + \delta H_e \tag{24}$$

At time t + dt the material move in A'B'CD and the enthalpy in this domain is

$$dH(t+dt) + \delta H_s \tag{25}$$

• The first law of thermodynamics applied to the materials in the ABCD domain at time *t* and between *t* and *t* + d*t* is

$$dH(t+dt) + \delta H_s - dH(t) - \delta H_e = \delta \mathcal{Q}$$
(26)



The different term of this last equation can be expressed as follow:

- d*H*(t + dt) = Sdx*ρ*CT(t + dt)
 d*H*(t) = Sdx*ρ*CT(t)
- $\delta H_s = Sv_x dt T(x + dx)$
- $\delta H_e = Sv_x dt T(x)$

We then obtain

$$Sdx\rho CT(t + dt) - Sdx\rho CT(t) + Sv_x dt T(x + dx) - Sv_x dt T(x)$$

= -S\phi_x(x + dx) + S\phi_x(x) (27)

and

$$\rho C \frac{\partial T}{\partial t} dt dx + \rho C v_x \frac{\partial T}{\partial x} dx dt = -\frac{\partial \phi_x}{\partial x} dx dt \qquad (28)$$

$$\rho C \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} \right) = -\frac{\partial \phi_x}{\partial x}$$
(29)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and with the Fourier's law and a constant heat conductivity

$$\rho C \frac{DT}{Dt} = \rho C \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} \right) = k \frac{\partial^2 T}{\partial x^2}$$
(30)

where $\frac{DT}{Dt}$ denotes the 'differentiation following the motion of the temperature with respect to the time.

The previous heat equation can be generalized to a three-dimensional problem:

$$\rho C \frac{DT}{Dt} = \rho C \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = \rho C \left(\frac{\partial T}{\partial t} + (\vec{v}.\vec{\text{grad}}) T \right)$$
$$= k\Delta T \qquad (31)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Convection

Introduction to convection

- **Convection**: heat transfer in a fluid or between a fluid and a solid due to *bulk motion* (advection)
- Two main types of thermal convection:
 - Natural convection (or free convection): the fluid motion is due to body force which acts on a fluid where there is *density gradient*. The net effect is a *buoyancy force* which induces fluid movement. In the most common case, the density gradient is do to *temperature* gradient.
 - Forced convection: the relative motion in the fluid or between the fluid and the surface is maintained by *external means* such as a fan or a pump.

Since free convection flow velocities are generally much smaller than those associated with forced convection, the corresponding convection transfer rates are also smaller.

Convection heat transfer coefficient

• Estimation of the heat flux due to convection on a fluid surface interface:

Typical value of the convection heat transfer coefficient

Process	h in W m ⁻² K ⁻¹
Free convection in gases	2 - 25
Free convection in fluids	50 - 1000
Forced convection in gases	25 - 250
Forced convection in fluids	50 - 20000
Convection with phase change	
(Boiling or condensation)	25000 - 100000

How to estimate the convection heat transfer coefficient in a given configuration ? $h = f(C, k_f, \rho, \mu, \alpha, L, V, T...)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

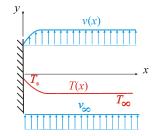
Forced convection : associated equations

Hypothesis :

- steady state regime
- incompressible fluid: $\rho = Cst$

The momentum equation is (Navier Stockes equation):

$$\rho \frac{\mathsf{d}\vec{v}}{\mathsf{d}f} = \rho \vec{g} - \overrightarrow{\mathsf{grad}} p + \mu \vec{\Delta} \vec{v}$$
Projection along y axis:



・ロト ・ 同ト ・ ヨト ・ ヨト

ж

$$\rho\left(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) + \underbrace{\rho\frac{\partial v}{\partial t}}_{=0} = \rho g - \frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \underbrace{\frac{\partial^2 v}{\partial y^2}}_{\approx 0}\right)$$

Forced convection : associated equations

Boundary conditions :

$$u(0, y) = 0; v(0, y) = 0; v(\infty, y) = v_{\infty}$$

Mass equation in steady state regime:

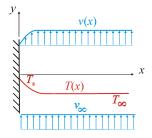
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Heat equation:

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} + \underbrace{\frac{\partial T}{\partial t}}_{=0} = \frac{k_f}{\rho C} \left(\frac{\partial^2 T}{\partial x^2} + \underbrace{\frac{\partial^2 T}{\partial y^2}}_{\approx 0} \right)$$

with $a = \frac{k_f}{\rho C}$ the heat diffusivity in m²s⁻¹ Boundary conditions :

$$T(0,y) = T_s; T(\infty,y) = T_\infty$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Forced convection : dimensionless variables and equations

Definition of dimensionless variables:

- $x^* = \frac{x}{L}$, $y^* = \frac{y}{L}$, where L is a characteristic length for the problem (i.e. length of the plate),
- $u^* = \frac{u}{V}$, $v^* = \frac{v}{V}$, where V is the velocity upstream of the surface,
- $T^* = \frac{T T_{\infty}}{T_s T_{\infty}}$, the dimensionless temperture,
- $p^* = \frac{p}{\rho V^2}$, the dimensionless pressure

Dimensionless momentum equation:

$$u^* \frac{\partial v^*}{\partial x^*} + v^* \frac{\partial v^*}{\partial y^*} = \frac{\partial p^*}{\partial y^*} + \underbrace{\mu \frac{L}{\rho V} \frac{V}{L^2}}_{=\frac{\mu}{\rho L V} = \frac{1}{R_e}} \frac{\partial^2 v^*}{\partial x^{*2}}$$

with *Re* the reynolds number : $Re = \frac{\text{Inertia forces}}{\text{Viscous forces}} \approx \frac{\frac{\rho V^2}{L}}{\frac{\mu V^2}{L^2}}$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

Forced convection: dimensionless variables and equations

Dimensionless heat equation equation:

$$u^*\frac{\partial T^*}{\partial x^*} + v^*\frac{\partial T^*}{\partial y^*} = \frac{a}{VL}\frac{\partial^2 T^*}{\partial x^{*2}}$$

with

$$\frac{a}{VL} = \frac{k_f}{\rho C} \frac{1}{VL} = \frac{1}{Re} \frac{\rho}{\mu} \frac{k_f}{\rho C} = \frac{1}{Re} \underbrace{\frac{k_f}{\mu C}}_{\frac{1}{P_f}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Pr the Prandt number : $Pr = \frac{\text{Momentum diffusion}}{\text{Heat diffusion}} \approx \frac{\frac{\mu}{\rho}}{a}$

with $\frac{\mu}{\rho}$ the kinematic viscosity in m²s⁻¹

Forced convection: dimensionless variables and equations Boundary condition of the heat transfer problem:

$$\varphi = h(T_S - T_\infty)$$

and

$$\varphi = -k_f \left. \frac{\partial T}{\partial x} \right|_{x=0} = -k_f \left. \frac{\partial T^*}{\partial x^*} \right|_{x^*=0} \frac{T_{\infty} - T_s}{L}$$

thus

$$h = \frac{k_f}{L} \left. \frac{\partial T^*}{\partial x^*} \right|_{x^* = 0}$$

and the Nusselt number is defined as

$$Nu = \left. \frac{\partial T^*}{\partial x^*} \right|_{x^*=0} = \frac{hL}{k_f}$$

The Nusselt number represents the ratio of the heat flux due to convection to the heat flux:

$$Nu = \frac{\varphi_{\text{convection}}}{\varphi_{\text{conduction}}} = \frac{h\Delta T}{k_f \frac{\Delta T}{L}} = \frac{hL}{k_f}$$

Correlation in forced convection

The equilibrium equations prompt us to expect heat transfer correlation of the form:

$$g(Nu, Re, Pr) = 0$$

or

Nu = f(Re, Pr)

Example of correlation in forced convection

• Laminar flow on a plate: $Re < 3 \times 10^5$ and Pr > 0.5

 $Nu = 0.664 Re^{1/2} Pr^{1/3}$

 \bullet Turbulent flow on a plate: $Re>5\times10^5$ and Pr>0.5

 $Nu = 0.035 Re^{4/5} Pr^{1/3}$

Example of correlation in forced convection

• Laminar flow in a pipe: Re < 2300

Nu = 3.66

• Turbulent flow in a pipe: $Re > 10^4$

$$Nu = 0.023 Re^{4/5} Pr^{0.4}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Natural convection

hypothesis :

- steady state regime
- gravity force is taken into account

The momentum equation is

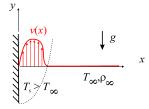
$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} - g + \frac{\mu}{\rho}\frac{\partial^2 v}{\partial x^2}$$

Far from the surface, a quasistatic pressure is supposed:

$$\frac{\partial p}{\partial y} = -\rho_{\infty}g$$

and thus

$$u\frac{\partial \mathbf{v}}{\partial x} + \mathbf{v}\frac{\partial \mathbf{v}}{\partial y} = \frac{\mathsf{g}}{\rho}\left(\rho_{\infty} - \rho\right) + \frac{\mu}{\rho}\frac{\partial^{2}\mathbf{v}}{\partial x^{2}}$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Natural convection

The volumetric thermal expansion coefficient

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p}$$

and thus

$$\beta \approx -\frac{1}{\rho} \frac{\rho_{\infty} - \rho}{T_{\infty} - T}$$

Density difference is thus

$$\rho_{\infty} - \rho \approx \rho \beta (T - T_{\infty})$$

The momentum equation becomes:

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = \underbrace{g\beta(T - T_{\infty})}_{\text{Buoyancy force}} + \frac{\mu}{\rho}\frac{\partial^2 v}{\partial x^2}$$

The heat equation remains unchanged:

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \frac{k}{\rho C}\frac{\partial^2 T}{\partial x^2}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Normalized equations of natural convection

Normalization of variables: $x^* = \frac{x}{L}$, $y^* = \frac{y}{L}$, $u^* = \frac{u}{V}$, $v^* = \frac{v}{V}$ and $T^* = \frac{T - T_{\infty}}{T_s - T_{\infty}}$ where *L* is a characteristic length and *V* an arbitrary reference velocity. The momentum equation is reduced to:

$$u^* \frac{\partial v^*}{\partial x^*} + v^* \frac{\partial v^*}{\partial y^*} = \frac{g\beta(T_s - T_\infty)L}{V^2} T^* + \frac{1}{Re} \frac{\partial^2 v^*}{\partial x^{*2}}$$

and

$$\frac{g\beta(T_s - T_\infty)L}{V^2} = \underbrace{\frac{g\beta(T_s - T_\infty)L^3}{\nu^2}}_{Gr} \underbrace{\left(\frac{\nu}{VL}\right)^2}_{1/Re^2}$$

where Gr is the Grashof number which indicates the ratio of buoyancy force to the viscous force acting in the fluid.

Correlation in natural convection

The equilibrium equations prompt us to expect heat transfer correlation of the form:

$$Nu = f(Re, Gr, Pr)$$

This type of correlations are pertinent when forced and free occur. Generally $\frac{Gr}{Re^2} >> 1$ and force convection effects may be neglected and:

$$Nu = f(Gr, Pr)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In this case the natural convection flow is induced solely by buoyancy forces.

Example of correlation in natural convection

• Vertical plate in laminar flow if $10^4 < Ra = GrPr < 10^9$ and $T_s = Cst$:

$$Nu = 0.59 Ra^{1/4}$$

• Verticale plate in turbulent flow $(10^9 < Ra < 10^{12})$

$$Nu = 0.13 Ra^{1/3}$$

• Vertical cylinder (length L):
• if
$$\frac{D}{L} \ge 35 Gr^{-1/4}$$
 plate correlation
• if $\frac{D}{L} \ge 35 Gr^{-1/4}$:

$$Nu \exp\left(\frac{-2}{Nu}\right) = 0.6 \left(\frac{D}{L}\right)^{1/4} Ra^{1/4}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Radiation

References

- Fundamental of Heat and Mass Transfer, F.P. Incropera, D.P. DeWitt, Wiley, 1996 (Forth Edition)
- A Heat Transfer Textbook, John H. Lienhard IV, John H. Lienhard V, Phlogiston Press, 2011 (can be download: http://web.mit.edu)

• Radiative Heat Transfer, M. F. Modest, Academic Press, 2003 (Second Edition)